COMPUTER GRAPHICS
UNIT-V

VISIBLE SURFACE DETECTION
METHOD

R.MANIMEGALAI

DEPARTMENT OF COMPUTER SCIENCE
PERIYAR GOVT ARTS COLLEGE
CUDDALORE.

Visible Surface
Detection

Visible Surface Detection

» Visible surface detection or hidden surface
removal.

* Realistic scenes: closer objects occludes the
others.

« Classification:

- Object space methods
- Image space methods

Object Space Methods

Algorithms to determine which parts of the shapes
are to be rendered in 3D coordinates.

Methods based on comparison of objects for their 3D
positions and dimensions with respect to a viewing
position.

For N objects, may require N*N comparision
operations.

Efficient for small number of objects but difficult to
implement.

Depth sorting, area subdivision methods.

Image Space Methods

Based on the pixels to be drawn on 2D. Try to
determine which object should contribute to that

pixel.

Running time complexity is the number of pixels
times number of objects.

Space complexity is two times the number of pixels:

- One array of pixels for the frame buffer
- One array of pixels for the depth buffer
Coherence properties of surfaces can be used.

Depth-buffer and ray casting methods.

Depth Cueing

« Hidden surfaces are not removed but displayed with
different effects such as intensity, color, or shadow
for giving hint for third dimension of the object.

« Simplest solution: use different colors-intensities
based on the dimensions of the shapes.

Back-Face Detection

Back-face detection of 3D polygon surface is
easy

Recall the polygon surface equation:

Ax+By+Cz+ D <0

We need to also consider the viewing
direction when determining whether a
surface is back-face or front-face.

The normal of the surface is given by:

N = (4, B,C)

Back-Face Detection

* A polygon surface is a back face if:

V. N>0

vView

 However, remember that after application of
the viewing transformation we are looking
down the negative z-axis. Therefore a
polygon is a back face if:

(0,0,—1)-N>0
orif C <0

Back-Face Detection

N = (A, B, C)

tad

L

« We will also be unable to see surfaces with

C=0. Therefore, we can identify a polygon
surface as a back-face if:

LSl

Back-Face Detection

« Back-face detection can identify all the
hidden surfaces in a scene that contain non-
overlapping convex polyhedra.

* But we have to apply more tests that contain
overlapping objects along the line of sight to
determine which objects obscure which
objects.

Depth-Buffer Method

* Also known as z-buffer method.

« It is an image space approach

- Each surface is processed separately one pixel
position at a time across the surface

- The depth values for a pixel are compared
and the closest (smallest z) surface
determines the color to be displayed in the
frame buffer.

- Applied very efficiently on polygon surfaces
- Surfaces are processed in any order

Depth-Buffer Method

View Plane

Depth-Buffer Method

« Two buffers are used
- Frame Buffer
- Depth Buffer

* The z-coordinates (depth values) are usually
normalized to the range [0,1]

Depth-Buffer Algorithm

 Initialize the depth buffer and frame buffer so that
for all buffer positions (x,y),

depthBuff (x,y) = 1.0, frameBuff (x,y) =bgColor
* Process each polygon in a scene, one at a time

- For each projected (x,y) pixel position of a polygon,
calculate the depth z.

- If z < depthBuff (x,y), compute the surface color at
that position and set

depthBuff (x,y) = z, frameBuff (x,y) = surfCol (X,y)

Calculating depth values efficiently

 We know the depth values at the vertices.
How can we calculate the depth at any other
point on the surface of the polygon.

* Using the polygon surface equation:

L —AX— By =)
C

Calculating depth values efficiently

* For any scan line adjacent horizontal x
positions or vertical y positions differ by 1
unit.

* The depth value of the next position (x+1,y)
on the scan line can be obtained using

, —A(x+1)-By-D
C

Z

Calculating depth values efficiently

* For adjacent scan-lines we can compute the
X value using the slope of the projected line
and the previous x value.

7].
X =x——
m
, A/m+ B
—>Z =Z=+

C

Depth-Buffer Method

* Is able to handle cases such as

' A |

P1 P2

View from the
Right-side

These polygons are both
in front of and behind one
another,

Z-Buffer and Transparency

* We may want to render transparent surfaces (alpha #1)
with a z-buffer

* However, we must render in back to front order

« Otherwise, we would have to store at least the first
opaque polygon behind transparent one

Partiall Front
) l.d Y e 3 SeEreeeee=lstor2nd
transparent
: 3rd: Need depth
aque 2nd o
L . of Ist and 2nd
Opaque st ~___— Must recall this
s —

Istor 2nd color and depth

OK. No Problem Problematic Ordering

A-Buffer Method

« Extends the depth-buffer algorithm so that
each position in the buffer can reference a
linked list of surfaces.

« More memory is required

 However, we can correctly compose different
surface colors and handle transparent
surfaces.

A-Buffer Method

« Each position in the A-buffer has two fields:

- a depth field

- surface data field which can be either surface
data or a pointer to a linked list of surfaces
that contribute to that pixel position

RGB and

depth =0 other info

(a)

depth < 0 — Surfl —| Surf2 — S

info info

(b)

Scan Line Method

« Extension of the scan-line algorithm for filling
polygon interiors

9 For all polygons intersecting each scan line

1 Processed from left to right

1 Depth calculations for each overlapping
surface

1 The intensity of the nearest position is entered
into the refresh buffer

Tables for The Various Surfaces

1 Edge table
Coordinate endpoints for each line
Slope of each line
Pointers into the polygon table

- Identify the surfaces bounded by each line
4 Polygon table

Coefficients of the plane equation for each surface
Intensity information for the surfaces
Pointers into the edge table

Active List & Flag

2 Active list

Contain only edges across the current scan line
Sorted in order of increasing x
1 Flag for each surface

Indicate whether inside or outside of the surface
At the leftmost boundary of a surface

- The surface flag is turned on
At the rightmost boundary of a surface

- The surface flag is turned off

* In computer graphics, z-buffering, also known as depth
buffering, is the management of image
depth coordinates in 3D graphics, usually done in
hardware, sometimes in software. It 1s one solution to
the visibility problem, which is the problem of deciding
which elements of a rendered scene are visible, and which
are hidden.

This method 1s developed by Cutmull.

[t is an image-space approach. The basic i1dea 1s to test the Z-
depth of each surface to determine the closest (visible) surface.

In this method each surface 1s processed separately one pixel
position at a time across the surface. The depth values for a
pixel are compared and the closest (smallest z) surface
determines the colour to be displayed in the frame buffer.

It 1s applied very efficiently on surfaces of polygon. Surfaces
can be processed in any order. To override the closer polygons
from the far ones, two buffers named frame buffer and depth
buffer, are used.

* Depth Values for a surface position(x , y) are calculated
from the plane equation for each surface by:

z= (-Ax-By-D)
c
* Depth Values across the edge are calculated by:
z =(-A(x+1)-By-D)
C

* Depth Values down the edge are recursively calculated
by:

z =z+ (A/m)+B
C

* Depth buffer is used to store depth values for (X, y)
position, as surfaces are processed (0 < depth <1).
* The frame buffer is used to

store the intensity value B

of colour value at each .-
. . = ‘ |
position (X, y). //_\,(,f;,,_:
- a ‘:.‘.:~\\
The z-coordinates are . e

usually normalized to
the range [0, 1]. The
0 value for z-coordinate | &

indicates back clipping pane and 1 value for z-coordinates
indicates front clipping pane.

e —— |
Algorithm:

Step-1 — Set the buffer values -

Depthbuffer (x,y) =0

Framebuftfer (x, y) = background colour

Step-2 — Process each polygon (One at a time)

For each projected (x, y) pixel position of a polygon,
calculate depth z.

If Z > depthbuffer (x, y)

Compute surface color,

set depthbuffer (x, y) = z,

framebuffer (X, y) = surfacecolor (x, y)

Advantages

* Itiseasy to implement.

* It reduces the speed problem if implemented in hardware.
» It processes one object at a time.

* Accurate performance.

Disadvantages

* It requires large memory.
 Itis time consuming process.

Uses:

* The Z-buffer 1s a technology used in almost all
contemporary computers, laptops and mobile phones for
performing 3D graphics, for example for computer
games. The Z-buffer is implemented as hardware in the
silicon ICs (integrated circuits) within these computers.
The Z-buffer is also used (implemented as software as
opposed to hardware) for producing computer-generated
special effects for films.

* Furthermore, Z-buffer data obtained from rendering a
surface from a light's point-of-view permits the creation
of shadows by the shadow mapping technique.

A-Buffer Method

Prerequisite : depth-buffer (or Z Buffer) method

A-Buffer method in computer graphics is a general hidden face detection mechanism suited to
medium scale virtual memory computers. This method 1s also known as anti-aliased or area-
averaged or accumulation buffer. This method extends the algorithm of depth-buffer (or Z Buffer)
method. As the depth buffer method can only be used for opaque object but not for transparent
object, the A-buffer method provides advantage in this scenario. Although the A buffer method
requires more memory, but different surface colors can be correctly composed using it. Being a
descendent of the Z-buffer algorithm, each position in the buffer can reference a linked list of
surfaces. The key data structure in the A buffer is the accumulation buffer.

Scan-Line Method

» It is an image-space method to identify visible surface.
This method has a depth information for only single scan-
line. In order to require one scan-line of depth values, we
must group and process all polyrgons intersecting a given
scan-line at the same time before processing the next
scan-line. Two important tables, edge table and polygon
table, are maintained for this.

» The Edge Table — It contains:-

coordinate endpoints of each line in the scene

the inverse slope of each line
and pointers into the polygon table to connect edges to surfaces.

» The Polygon Table — It contains:-
the plane coefficients
surface material properties
other surface data
may be pointers to the edge table.

Scan-Line Method

Each of the scan line is processes from left to right. The surface flag is
turned on at left intersection and at right intersection it is turned off.

In this method, as each scan line is processed, all polygon
surfaces intersecting that line are examined to determine which
are visible. A cross each scan line, depth calculations are made
for each overlapping surface to determine which is nearest to the
view plane. When the visible surface has been determined, the
intensity value for that position is entered into the image buffer.

The search for the surfaces that cross a given scan line can be
facilitated by an active list of edges. Only the edges that cross
the scan line is stored by the active list. For indicating whether
the position along a scan line is inside or outside the surface, a
flag is set.

Each of the scan line is processes from left to right. The surface
flag is turned on at left intersection and at right intersection it is
turned off.

Scan-Line Method

Scan Line |

Scan Line 2
Scan Line 3

Scan lines corssing the projection of two furfaces S1,52 in the
view plane. Dashed lines indicate the boundaries of hidden
surfaces.

#y

BSP Trees

* Binary space partitioning trees.

» Used to store a collection of objects in n-
dimensional space.

* Tree recursively divides n-dimensional
space using (n-1)-dimensional hyperplanes.

Space Partitioning

n-dimensional space

splitting hyperplane
(n-1)-dimensional

- aX;+ax,t...ax +a. =0
ax + by +c =0 (2D)
ax+by+cz+d = 0 (3D)

Space Partitioning

: : +ve half space
n-dimensional space

Lax +by+c>0

/ ax+by+cz+d > 0

coincident
Lax+by+c=0

ax+by+cz+d =0

-ve half space

~ ax +by +¢<0

ax+by+cz+d < 0

Classitying Object z

* In 2D, ph is the line ax + by + ¢ = 0.
* Compute ax + by + ¢ for all vertices of z.
= If all values are = 0; z 1s coincident to ph.
= If all values are <= 0; z 1s left of ph.
= If all values are >= 0; z is right of ph.

= Otherwise, z spans ph and 1s to be split by
finding intersection points with ph.

2D

3 D Equation of ph is
z-2=0

General: ax+ by +cz+d=0

Space Partitioning

n-dimensional space

coincident list

+VvE
-VE +Vve

-VEe

Objects 1n 2D

Objects 1n 2D

Collision Detection

Visibility Ordering

BSP Trees

* Binary space partitioning trees.

» Used to store a collection of objects in n-
dimensional space.

* Tree recursively divides n-dimensional
space using (n-1)-dimensional hyperplanes.

Space Partitioning

n-dimensional space

splitting hyperplane
(n-1)-dimensional

- aX;+ax,t...ax +a. =0
ax + by +c =0 (2D)
ax+by+cz+d = 0 (3D)

Space Partitioning

: : +ve half space
n-dimensional space

Lax +by+c>0

/ ax+by+cz+d > 0

coincident
Lax+by+c=0

ax+by+cz+d =0

-ve half space

~ ax +by +¢<0

ax+by+cz+d < 0

Classitying Object z

* In 2D, ph is the line ax + by + ¢ = 0.
* Compute ax + by + ¢ for all vertices of z.
= If all values are = 0; z 1s coincident to ph.
= If all values are <= 0; z 1s left of ph.
= If all values are >= 0; z is right of ph.

= Otherwise, z spans ph and 1s to be split by
finding intersection points with ph.

2D

3 D Equation of ph is
z-2=0

General: ax+ by +cz+d=0

Space Partitioning

n-dimensional space

coincident list

+VvE
-VE +Vve

-VEe

Objects 1n 2D

Objects 1n 2D

Collision Detection

Visibility Ordering

Scan-Line Method

+ Figure illustrates the scan-line method for locating visible portions of surfaces for pixel
positions along the line. The active list for line 1 contains information from the edge table for
edges AB, BC, EH, and FG. For positions along this scan line between edges AB and BC, only the
flag for surface S1 is on. Therefore no depth calculations are necessary, and intensity
information for surface S1, is entered from the polygon table into the refresh buffer. Similarly,
between edges EH and FG, only the flag for surface S2 is on. NO other positions along scan line
1 intersect surfaces, so the intensity values in the other areas are set to the background
intensity. The background intensity can be loaded throughout the buffer in an initialization
routine.

» For scan lines 2 and 3 in Fig. , the active edge list contains edges AD, EH, BC, and FG. Along
scan line 2 from edge AD to edge EH, only the flag for surface S1 is on. But between edges EH
and BC, the flags for both surfaces are on. In this interval, depth calculations must be made
using the plane coefficients for the two surfaces. For this example, the depth of surface S1 is
assumed to be less than that of S2, so intensities for surface S1 are loaded into the refresh
buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities
for surface S2 are stored until edge FG is passed.

» We can take advantage of-coherence along the scan lines as we pass from one scan line to
the next. In Fig. 4 , scan line 3 has the same active list of edges as scan line 2. Since no
changes have occurred in line intersections, it is unnecessary again to make depth calculations
between edges EH and BC. The two surfaces must be in the same orientation as determined on
scan line 2, so the intensities for surface S1 can be entered without further calculations.

BSP Trees

* Binary space partitioning trees.

» Used to store a collection of objects in n-
dimensional space.

* Tree recursively divides n-dimensional
space using (n-1)-dimensional hyperplanes.

Space Partitioning

n-dimensional space

splitting hyperplane
(n-1)-dimensional

- aX;+ax,t...ax +a. =0
ax + by +c =0 (2D)
ax+by+cz+d = 0 (3D)

Space Partitioning

: : +ve half space
n-dimensional space

Lax +by+c>0

/ ax+by+cz+d > 0

coincident
Lax+by+c=0

ax+by+cz+d =0

-ve half space

~ ax +by +¢<0

ax+by+cz+d < 0

Classitying Object z

* In 2D, ph is the line ax + by + ¢ = 0.
* Compute ax + by + ¢ for all vertices of z.
= If all values are = 0; z 1s coincident to ph.
= If all values are <= 0; z 1s left of ph.
= If all values are >= 0; z is right of ph.

= Otherwise, z spans ph and 1s to be split by
finding intersection points with ph.

2D

3 D Equation of ph is
z-2=0

General: ax+ by +cz+d=0

Space Partitioning

n-dimensional space

coincident list

+VvE
-VE +Vve

-VEe

Objects 1n 2D

Objects 1n 2D

Collision Detection

Visibility Ordering

Area subdivision Method

This hidden surface removal technique is essentially an image space method
But object space operations can be used to accomplish depth ordering of surfaces
Takes advantage of area coherence

Small areas of an image are likely to be covered by only a single polygon

Applied by successively dividing the total view plane into smaller and smaller
rectangles until each rectangle area contains either

The projection of part of a single visible surface

No surface projections

Or the area has been reduced to the size of a pixel

Starting with a total view, apply tests to determine whether area should be subdivided

The basic principle
If the area is sufficiently complex, then subdivide An easy approach is to
Successively divide the area into four equal parts each step

(same as A 1024 x 1024 viewing area could be subdivided ten times

before a subarea is reduced to the size of a single pixel

Four surface classifications

Surrounding surface — Surface completely encloses area
Overlapping surface — Surface partly inside and partly outside
Inside surfac — Surface completely inside

Outside surface — Surface completely outside

No further subdivision required it for specified area one of the following conditions is
true.

Condition 1

Area has no inside, overlapping, or surrounding surfaces (i.e. all surfaces are

outside the area).

Condition 2

Area has only one inside, overlapping, or surrounding surface.

Condition 3

Area has one surrounding surface that obscures all other surfaces within the

area boundaries.

OCTREE METHOD

An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often
used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-
dimensional analog of quadtrees. The name is formed from oct + tree, but note that it is normally written "octree"
with only one "t". Cortes are often used in 3D graphics and 3D game engines.

Ray casting is the methodological basis for 3-D CAD/CAM solid modeling and image rendering. It is essentially
the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the
focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the 3-
D scene. The term "Ray Casting" was introduced by Scott Roth while at the General Motors Research Labs from
1978-1980. His paper, "Ray Casting for Modeling Solids"[1], describes modeled solid objects by combining
primitive solids, such as blocks and cylinders, using the set operators union (+), intersection (&), and difference.
The general idea of using these binary operators for solid modeling is largely due to Voelcker and Requicha's
geometric modelling group at the University of Rochester[2][3]. See Solid modeling for a broad overview of solid
modeling methods. This figure on the right shows a U-Joint modeled from cylinders and blocks in a binary tree
using Roth's ray casting system, circa 1979.

RAY CASTING METHOD

Ray-casted image of idealized universal joint with shadow

Before ray casting (and ray tracing), computer graphics algorithms projected surfaces or edges (e.g., lines) from
the 3-D world to the image plane where visibility logic had to be applied. The world-to-image plane projection is
a 3-D homogeneous coordinate system transformation (aka: 3D projection, affine transformation, or projective
transform (Homograph). Rendering an image in that way is difficult to achieve with hidden surface/edge removal.
Plus, silhouettes of curved surfaces have to be explicitly solved for whereas it is an implicit by-product of ray
casting, so there is no need to explicitly solve for it whenever the view changes.

Ray casting greatly simplified image rendering of 3-D objects and scenes because a line transforms to a line. So,
instead of projecting curved edges and surfaces in the 3-D scene to the 2-D image plane, transformed lines (rays)
are intersected with the objects in the scene. A homogeneous coordinate transformation is represented by 4x4
matrix. The mathematical technique is common to computer graphics and geometric modeling.[4] A transform
includes rotations around the three axes, independent scaling along the axes, translations in 3-D, and even
skewing. Transforms are easily concatenated via matrix arithmetic. For use with a 4x4 matrix, a point is
represented by [X, Y, Z, 1] and a direction vector is represented by [Dx, Dy, Dz, 0]. (The fourth term is for
translation and that does not apply to direction vectors.)

While simplifying the mathematics, the ray casting algorithm is very computer-processing intensive. Pixar has
large render farms, buildings with 1000's of CPUs, to make their animations using ray tracing [aka "ray casting"]
as a core technique.

