
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - I

1

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Algorithm and Analysis

Syllabus

UNIT -I: ALGORITHM AND ANALYSIS

What is an Algorithm? - Algorithm Specification - Performance

Analysis - Randomized Algorithms.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj

Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.

2

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Introduction to the Concept of Algorithms

• Algorithm

• Problem Solving

• Design of an Algorithm

• Analysis of an algorithm

3

Dr. R. Bhuvaneswari

Notion of an Algorithm

Computer

Algorithm

Problem

Input Output

Periyar Govt. Arts College

Cuddalore 4

Dr. R. Bhuvaneswari

Algorithm

• An algorithm is a finite set of instructions that, if followed,

accomplishes a particular task i.e., for obtaining a required

output for any legitimate input in a finite amount of time.

• All algorithms must satisfy the following criteria:

 Definiteness. Each instruction is clear and unambiguous.

 Effectiveness. Every instruction must be very basic so that

it can carried out, by a person using pencil and paper.

 Finiteness. If we trace out the instructions of an algorithm,

then for all cases, the algorithm terminates after a finite

number of steps.

 Input. Zero or more quantities are externally supplied.

 Output. At least one quantity is produced.

Periyar Govt. Arts College

Cuddalore 5

Dr. R. Bhuvaneswari

Algorithm Specification

• An algorithm can be described in

three ways:

 Natural language in English

 Graphic representation called

flowchart

 Pseudo-code method

 In this method we typically

represent algorithms as

program, which resembles C

language

1. Input two numbers

2. Add the two numbers

3. Print the result

Periyar Govt. Arts College

Cuddalore 6

Dr. R. Bhuvaneswari

Pseudo-code Conventions

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces { and }.

3. An identifier begins with a letter. The data types of

variables are not explicitly declared.

4. Assignment of values to variables is done using the

assignment statement.

 ‹variable› := ‹expression›;

5. There are two Boolean values true and false.

Logical operators: AND, OR, NOT

Relational operators: , ≤, =, ≠, >, ≥

Periyar Govt. Arts College

Cuddalore 7

Dr. R. Bhuvaneswari

Pseudo-code Conventions

6. The following looping statements are used:

 while, for and repeat-until

while loop:

while ‹condition› do

{

 ‹statement 1›

 .

 .

 ‹statement n›

}

for loop:

for variable:= value1 to value2

 step step-value do

{

 ‹statement 1›

 .

 .

 ‹statement n›

}

repeat-until:

repeat

 ‹statement 1›

 .

 .

 ‹statement n›

until ‹condition›

Periyar Govt. Arts College

Cuddalore 8

Dr. R. Bhuvaneswari

Pseudo-code Conventions

7. A conditional statement has the following forms:

if ‹condition› then ‹statement›

if ‹condition› then ‹statement 1› else ‹statement 2›

case statement:

case

{

 :‹condition 1›: ‹statement 1›

 .

 .

 :‹condition n›: ‹statement n›

 :else: ‹statement n+1›

}

Periyar Govt. Arts College

Cuddalore 9

Dr. R. Bhuvaneswari

Pseudo-code Conventions

8. Input and output are done using the instructions read and

write.

9. There is only one type of procedure: Algorithm.

 Algorithm contains

 Heading

 Body

 The heading takes the form

 Algorithm Name (‹parameter list›) heading

 {

 …… body

 ……

 }

Periyar Govt. Arts College

Cuddalore 10

Dr. R. Bhuvaneswari

Pseudo-code Conventions

1. Algorithm Max(A, n)

2. // A is an array of size n.

3. {

4. Result := A[1];

5. for i :=2 to n do

6. if A[i] > result then

7. Result := A[i];

8. return Result;

9. }

n = 5, Result = 10
A[1] = 10
A[2] = 87 Result = 87
A[3] = 45
A[4] = 66
A[5] = 99 Result = 99

Periyar Govt. Arts College

Cuddalore 11

Dr. R. Bhuvaneswari

Performance Analysis

1. Space Complexity

2. Time Complexity

Space complexity of an algorithm is the

amount of memory it needs to run to

complete.

Space needed by an algorithm is given by

S(P) = C(fixed part) + Sp(variable part)

fixed part: independent of instance

characteristics. Eg. Space for simple

variables, constants etc.

variable part: space for variables whose

size is dependent on particular problem

instance

1. Algorithm Max(A, n)

2. // A is an array of size n.

3. {

4. Result := A[1];

5. for i :=2 to n do

6. if A[i] > result then

7. Result := A[i];

8. return Result;

9. }

variables i, n, result = 1 unit

each

variable A = n units

Periyar Govt. Arts College

Cuddalore 12

Dr. R. Bhuvaneswari

Performance Analysis

Algorithm-1

Algorithm abc(a,b,c)

{

return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

a → 1

b → 1

c → 1

 3 units

Algorithm-2

Algorithm Sum(a, n)

{

s:=0.0;

for i:=1 to n do

 s := s + a[i];

return s;

}

i → 1

s → 1

n→ 1

a→ n units

 n+3 units

Periyar Govt. Arts College

Cuddalore 13

Dr. R. Bhuvaneswari

Performance Analysis

RSum(a,n) = 1(a[n]) + 1(n) + 1(return) = 3

units

RSum(a,n-1) = 1(a[n-1]) + 1(n) + 1(return)

 …………

 …………

RSum(a,n-n) = 1(a[n-n]) + 1(n) + 1(return)

Total → ≥ 3(n+1) units

Algorithm-3

Algorithm RSum(a, n)

{

if (n≤ 0) then

return 0.0;

else

Return RSum(a, n-1)+a[n];

}

Periyar Govt. Arts College

Cuddalore 14

Dr. R. Bhuvaneswari

Performance Analysis

2. Time Complexity

The time complexity of an algorithm is the amount of

computer time it needs to run to complete.

T(P) = compile time + execution time

T(P) = Tp(execution time)

Step count:

 For algorithm heading → 0

 For braces → 0

 For expressions → 1

 For any looping statements → number of times the loop

is repeating

Periyar Govt. Arts College

Cuddalore 15

Dr. R. Bhuvaneswari

Performance Analysis

Algorithm-1

Algorithm abc(a,b,c)

{

return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

→ 0
→ 0
→ 1
→ 0
 1 unit

Algorithm-2

Algorithm Sum(a, n)

{

s:=0.0;

for i:=1 to n do

 s := s + a[i];

return s;

}

→ 0

→ 0

→ 1

→ n+1

→ n

→ 1

→ 0

2n+3 units
Periyar Govt. Arts College

Cuddalore 16

Dr. R. Bhuvaneswari

Performance Analysis

T(n) = 2 if n = 0

 = 2 + T(n-1) if n > 0

T(n) = 2 + T(n-1)

 = 2+ (2 + T(n-2))

 = 2 + 2 +T(n-2) = 2*2 + T(n-2)

 = 2*2+(2+T(n-3))

 = 2*2+2+T(n-3) = 2*3+T(n-3)

 …………

 …………

 = 2*n + T(n-n) = 2n+T(0)

T(n) = 2n+2 units

Algorithm-3

Algorithm RSum(a, n)

{

if (n≤ 0) then

 return 0.0;

else

 return RSum(a, n-1)+a[n];

}

Periyar Govt. Arts College

Cuddalore 17

Dr. R. Bhuvaneswari

Randomized algorithms

• Makes use of randomizer (random number generator).

• Decisions made in the algorithm depends on the output of

the randomizer.

• Output and execution time may very from run to run for the

same input.

Periyar Govt. Arts College

Cuddalore 18

Dr. R. Bhuvaneswari

Randomized algorithms

Algorithm RepeatedElement(a,n)

{

while(true) do

{

i = Random() mod n+1;

j = Random() mod n+1;

if ((i # j) and (a[i] = a[j])) then

 return i;

}

}

Periyar Govt. Arts College

Cuddalore

10 20 30 40 50 60 60 60 60 60

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]

Eg.

i = 1, j = 6

1 # 6 and a[1] # a[6]

i = 1, j = 5

1 # 5 and a[1] # a[5]

i = 2, j = 2

2 = 2

i = 4, j = 9

4 # 9 and a[4] # a[9]

i = 9, j = 3

9 # 3 and a[9] # a[3]

i = 6, j = 7

6 # 7 and a[6] = a[7]

19

