
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - II

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Divide and Conquer

Syllabus

UNIT - II: DIVIDE AND CONQUER

General Method - Binary Search - Finding the Maximum and

Minimum - Merge Sort - Quick Sort - Selection Sort - Strassen’s

Matrix Multiplications.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj

Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.

2

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Divide and Conquer

General Method:

• Given a function to compute on ‘n’ inputs, divide-and-conquer

strategy suggests splitting the inputs into ‘k’ distinct subsets,

1<k≤n, yielding ‘k’ subproblems.

• These subproblems must be solved, and then a method must be

found to combine sub solutions into a solution of the whole.

• If the subproblems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied.

• For those cases the re-application of the divide-and-conquer

principle is naturally expressed by a recursive algorithm.

3

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Divide and Conquer

4

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n
(instance)

Dr. R. Bhuvaneswari

Divide and Conquer

Periyar Govt. Arts College

Cuddalore

Control Abstraction of Divide and Conquer

Algorithm DAndC(P)

{

if small(P) then

 return S(P);

else

{

 divide P into smaller instance P1, P2…….., Pk, k≥1;

 apply DAndC to each of these subproblems;

 return combine(DAndC(P1), DAndC(P2), ……., DAndC(Pk));

}

}

5

Dr. R. Bhuvaneswari

Divide and Conquer

Periyar Govt. Arts College

Cuddalore

Computing time of DAndC is:

where

T(n) is the time for DAndC on any input of size n

g(n) is the time to compute the answer directly for small inputs

f(n) is the time for dividing P and combining the solutions to

subproblems

6

T n =
g n n small

T n1 + T n2 + … . +T nk + f n otherwise

Dr. R. Bhuvaneswari

Binary Search

The following concept is used to search an element in the given array:

• Find the middle element

• Check the middle element with the element to be found.

• If the middle element is equal to that element, then it will provide the

output.

• If the value is not same, then it will check whether the middle element

value is less than or greater than the element to be found.

• If the value is less than that element, then the search will start with the

elements next to the middle element.

• If the value is high than that element, then the search will start with the

elements before the middle element.

• This process continues, until that particular element has been found.

Periyar Govt. Arts College

Cuddalore 7

Dr. R. Bhuvaneswari

Binary Search

• Let ai be a list of elements that are in non-decreasing order. 1≤i ≤n.

• It is a problem of determining whether a given element x is present

in the list.

Periyar Govt. Arts College

Cuddalore

mid = (low+high)/2 x = 60

1. low = 1, high = 10

 mid = (1+10)/2 = 5, 60 > 50, low = 6

2. low = 6, high = 10

 mid = (6 + 10)/2 = 8, 60 < 80, high = 7

3. low = 6, high = 7

 mid = (6 + 7)/2 = 6

10 20 30 40 50 60 70 80 90 100

 1 2 3 4 5 6 7 8 9 10

1.(x<a[mid]) then

 high = mid-1

2.else if (x>a[mid]) then

 low = mid+1

3.else return mid;

8

Dr. R. Bhuvaneswari

Binary Search

Algorithm BinSearch(a,n,x)

//Given an array a[1:n] of elements in

//nondecreasing order, n ≥ 0

{

 low = 1; high = n;

 while (low ≤ high) do

 {

 mid := (low+high)/2;

 if (x < a[mid]) then high = mid-1;

 else if (x > a[mid]) then low := mid+1;

 else return mid;

 }

 return 0;

}
Periyar Govt. Arts College

Cuddalore

10 20 30 40 50 60 70 80 90 100

mid = (low+high)/2 x = 30

1. low = 1, high = 10

 mid = (1+10)/2 = 5, 30 < 50, high = 4

2. low = 1, high = 4

 mid = (1 + 4)/2 = 2, 30 > 20, low = 3

3. low = 3, high = 4

 mid = (3 + 4)/2 = 3

 1 2 3 4 5 6 7 8 9 10

9

Dr. R. Bhuvaneswari

Binary Search using recursion

Algorithm BinSrch(a,i,l,x)

{

if (l = i) then

{

 if (x = a[i]) then return i;

 else return 0;

}

else

{

 mid = (i+l)/2;

 if (x = a[mid]) then return mid;

 else if (x < a[mid]) then return BinSrch(a,i,mid-1,x);

 else return BinSrch(a,mid+1,l,x);

}

} Periyar Govt. Arts College

Cuddalore

10 20 30 40 50 60 70 80 90 100

 1 2 3 4 5 6 7 8 9 10

mid = (i+l)/2 x = 30

1. i = 1, l = 10

 mid = (1+10)/2 = 5, 30 < 50, l = 4

2. i = 1, l = 4

 mid = (1 + 4)/2 = 2, 30 > 20, i = 3

3. i = 3, l = 4

 mid = (3 + 4)/2 = 3

10

Dr. R. Bhuvaneswari

Binary Search

Periyar Govt. Arts College

Cuddalore 11

Time Complexity

1. If the search element is the middle element of the array, in this case,

time complexity will be O(1), the best case.

2. Otherwise, binary search algorithm breaks the array into half in each

iteration.

The array is divided by 2 until the array has only one element:

we can rewrite it as:

 n = 2k

by taking log both side, we get

 log2
n = log22

k

 log2
n = klog2

2

 k = log2
n (since loga

a = 1)

The time complexity of binary search is log2
n

Dr. R. Bhuvaneswari

Finding the maximum and minimum

• The problem to find the maximum and

minimum items in a set of n elements.

Algorithm StraightMaxMin(a,n,max,min)

// set max to maximim and min to the

// minimum of a[1:n]

{

 max := min := a[1];

 for i := 2 to n do

 {

 if (a[i] > max) then max := a[i];

 if (a[i] < min) then min := a[i];

 }

}
• StraightMaxMin requires 2(n-1) element

comparisons in the best, average and
worst cases. Periyar Govt. Arts College

Cuddalore 12

37 78 45 12 92

 1 2 3 4 5

max = min = 37

i = 2

max = 78; min = 37

i = 3

max = 78; min = 37

i = 4

max = 78; min =12

i = 5

max = 92; min = 12

Dr. R. Bhuvaneswari

Finding the maximum and minimum

• An immediate improvement is possible by realizing that the

comparison a[i] < min is necessary only when a[i] > max is false.

 Hence we can replace the contents of the for loop by

 if (a[i] > max) then max := a[i];

 else if (a[i] < min) then min := a[i];

• When the elements are in the increasing order the number of

element comparisons is n-1.

• When the elements are in the decreasing order the number of

element comparisons is 2(n-1).

Periyar Govt. Arts College

Cuddalore 13

Dr. R. Bhuvaneswari

Finding the maximum and minimum

Divide and Conquer Algorithm

• Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem.

• Here ‘n’ is the no. of elements in the list (a[i],….,a[j]) and we are

interested in finding the maximum and minimum of the list.

• If the list has more than 2 elements, P has to be divided into smaller

instances.

• We divide ‘P’ into the 2 instances,

P1=([n/2], a[1],……..a[n/2]) and

P2= (n-[n/2], a[[n/2]+1],….., a[n])

• After having divided ‘P’ into 2 smaller sub problems, we can solve them

by recursively invoking the same divide-and-conquer algorithm.

• max(P) is the maximum of max(P1) and max(P2)

• min(P) is the minimum of min(P1) and min(P2)

Periyar Govt. Arts College

Cuddalore 14

Dr. R. Bhuvaneswari

Algorithm MaxMin(i,j,max,min)

//a[1:n] is a global array.

{

if (i = j) then max = min = a[i];

else if (i = j-1) then

{

 if (a[i] < a[j]) then

 {

 max = a[j]; min = a[i];

 }

 else

 {

 max = a[i]; min = a[j];

 }

 }

 else

{{

 mid = (i+j)/2;

 MaxMin(i,mid,max,min);

 MaxMin(mid+1,j,max1,min1);

 if(max < max1) then max = max1;

 if (min > min1) then min = min1;

 }

}

Finding the maximum and minimum

Periyar Govt. Arts College

Cuddalore 15

Dr. R. Bhuvaneswari

Finding the maximum and minimum

Periyar Govt. Arts College

Cuddalore 16

1, 9, 60,-8

1, 5, 22, -8 6, 9, 60, 17

1, 3, 22, -5 4, 5, 15, -8 6, 7, 60, 17 8, 9, 47, 31

1, 2, 22, 13 3, 3, -5,-5

mid = (1+9)/2

 = 5

mid = (1+5)/2

 = 3

mid = (1+3)/2

 = 2

mid = (6+9)/2

 = 7

Example: find max and min in the array:

 22, 13, -5, -8, 15, 60, 17, 31, 47 (n = 9)

Index: 1 2 3 4 5 6 7 8 9

Array: 22 13 -5 -8 15 60 17 31 47

Dr. R. Bhuvaneswari

Finding the maximum and minimum

Periyar Govt. Arts College

Cuddalore 17

The number of element comparisons T(n) is represented as recurrence

relation

When n is a power of two, n = 2k for some positive integer k, then

 T(n) = 2T(n/2)+2

= 2(2T(n/4)+2)+2

= 4T(n/4) + 4 + 2

= 4(2T(n/8) + 2) +4 + 2

= 8T(n/8) + 8 + 4 + 2

 …….

= 2kT(n/2k) + 2k + 2k-1 + 2k-2 + …… + 2

𝑇 𝑛 =
𝑇

𝑛

2
 + 𝑇

𝑛

𝑛
 + 2 𝑛 > 2

1 𝑛 = 2
0 𝑛 = 1

Dr. R. Bhuvaneswari

Finding the maximum and minimum

Periyar Govt. Arts College

Cuddalore 18

 Taking T(2) = 1

ie.
𝑛

2𝑘
= 2

T(n) = 2k + 2k + 2k-1 + 2k-2 + ……. + 2

 = 2k + 2𝑗𝑘
𝑗=1

 = 2k + 2 ∗
(2𝑘−1)

2−1

 =
𝑛

2
+ 2 ∗ (

𝑛

2
− 1)

 =
𝑛

2
+ 𝑛 − 2

 =
3𝑛

2
− 2

Therefore, 3n/2- 2 is the best, average and worst case number of comparisons where

n is power of 2.

𝑆𝑖𝑛𝑐𝑒, 𝑥𝑗
𝑛

𝑗=1

= 𝑥 ∗
𝑥𝑛 − 1

𝑥 − 1

Dr. R. Bhuvaneswari

Merge Sort

Periyar Govt. Arts College

Cuddalore 19

 Sort a sequence of n elements into non-decreasing order.

 Merge sort is a sorting technique based on divide and conquer

technique.

 Merge sort first divides the unsorted list into two equal halves.

 Sort each of the two sub lists recursively until we have list size

of length 1, in which case the list itself is returned.

 Merge the two sorted sub lists back into one sorted list.

Dr. R. Bhuvaneswari

Merge Sort

Periyar Govt. Arts College

Cuddalore 20

Dr. R. Bhuvaneswari

Merge Sort

Periyar Govt. Arts College

Cuddalore 21

Algorithm MergeSort(low,high)

{

 If (low < high) then

 {

 mid = (low+high)/2;

 MergeSort(low,mid);

 MergeSort(mid+1,high);

 Merge(low,mid,high);

 }

}

1, 7

1, 4

1, 2

1, 1 2, 2

mid = 4

mid = 2

mid = 1

38 27 43 3 9 82 10

Dr. R. Bhuvaneswari

Algorithm Merge(low,mid,high)

//b[] is an auxiliary global array.

{

 h=low; i=low; j=mid+1;

 while((h≤mid) and (j≤high)) do

 {

 if(a[h] ≤ a[j]) then

 {

 b[i] = a[h]; h = h+1;

 }

 else

 {

 b[i] = a[j]; j = j+1;

 }

 i = i+1;

 }

 if(h > mid) then

 {

 for k = j to high do

 {

 b[i] = a[k]; i = i+1;

 }

 }

 else

 {

 for k = h to mid do

 {

 b[i] = a[k]; i = i+1;

 }

 }

 for k = low to high do

 a[k] = b[k];

}

Merge Sort

Periyar Govt. Arts College

Cuddalore 22

Dr. R. Bhuvaneswari

Merge Sort

Periyar Govt. Arts College

Cuddalore 23

𝑇 𝑛 =
𝑎 𝑛 = 1, 𝑎 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

2𝑇
𝑛

2
 + 𝑐𝑛 𝑛 > 1, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Computing time for merge sort is described by the recurrence relation,

when n = 2k

 T(n) = 2T(n/2) + cn

 = 2[2T(n/4) + cn/2] + cn

 = 4T(n/4) + cn + cn

 = 4T(n/4) + 2cn

 = 4[2T(n/8) + cn/4] + 2cn

 = 8T(n/8) + cn + 2cn

 = 8T(n/8) + 3cn

 ………….

 = 2kT(n/2k) + kcn

 = 2kT(1) + kcn

 = an + cnlogn

Since,

T(n/2k = 1)

n = 2k

log2
n = log22

k

 = klog2
2

 = k

Dr. R. Bhuvaneswari

Quick Sort

Periyar Govt. Arts College

Cuddalore 24

• In merge sort, the array a[1:n] was divided at its midpoint into

sub arrays which were independently sorted and later merged.

• In quick sort, the division into 2 sub arrays is made so that the

sorted sub arrays do not need to be merged later.

• This is accomplished by rearranging the elements in a[1:n] such

that a[i] ≤ a[j] for all i between 1 and m and all j between (m+1)

and n for some m, 1 ≤ m ≤ n.

• Thus the elements in a[1:m] and a[m+1:n] can be independently

sorted.

• No merging is needed.

• This rearranging is referred to as partitioning.

Dr. R. Bhuvaneswari

Quick Sort

Periyar Govt. Arts College

Cuddalore 25

• Quick sort picks an element as pivot element and partitions the

given array around the picked pivot.

• There are many different versions of quick sort that pick pivot in

different ways.

 pick first element as pivot.

 pick last element as pivot.

 Pick a random element as pivot.

 Pick median as pivot.

• The role of the pivot value is to assist with splitting the list.

• The actual position where the pivot value belongs in the final

sorted list, commonly called the split point, will be used to divide

the list for subsequent calls to the quick sort.

Dr. R. Bhuvaneswari

Quick Sort Example

Periyar Govt. Arts College

Cuddalore 26

Dr. R. Bhuvaneswari

Algorithm Quicksort(p,q)

{

if (p<q) then

 {

 j:= Partititon (a,p,q+1);

 Quicksort(p,j-1);

 Quicksort(j+1,q);

 }

}

Algorithm Partition(a,m,p)

{

 v:=a[m]; i:=m; j:=p;

 repeat

 {

 repeat

 i:=i+1;

 until (a[i] ≥ v);

 repeat

 j := j-1;

 until (a[j] ≤ v);

 if (i < j) then Interchange(a, i, j);

 }until (i ≥j);

 a[m] := a[j];

 a[j] := v;

 return j;

}

Algorithm Interchange(a, i, j)

{

 p := a[i];

 a[i] := a[j];

 a[j] := p;

}

Quick Sort

Periyar Govt. Arts College

Cuddalore 27

Dr. R. Bhuvaneswari

Quick Sort

Periyar Govt. Arts College

Cuddalore 28

Computing time for Quick sort

 T(n) = 2T(n/2) + n for n > 1, T(1) = 0

 T(n) = 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + n + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + n + 2n

 = 8T(n/8) + 3n

 ………….

 = 2kT(n/2k) + kn

 = nT(1) + kn

 = nlogn

Since,

T(n/2k = 1)

n = 2k

log2
n = log22

k

 = klog2
2

 = k

Dr. R. Bhuvaneswari

Selection Sort

Periyar Govt. Arts College

Cuddalore 29

• Selection sort is the most simplest sorting algorithm.

• Following are the steps involved in selection sort(for sorting a

given array in ascending order):

 Starting from the first element, search the smallest element in

the array, and replace it with the element in the first position.

 Then move on to the second position, and look for smallest

element present in the subarray, starting from index 2 till the

last index.

 Replace the element at the second position in the original

array with the second smallest element.

 This is repeated, until the array is completely sorted.

Dr. R. Bhuvaneswari

Selection Sort Example

Periyar Govt. Arts College

Cuddalore 30

Dr. R. Bhuvaneswari

Selection Sort

Periyar Govt. Arts College

Cuddalore 31

Algorithm Selection(a, n)

{

 for i := 1 to n-1 do

 {

 min := a[i];

 loc := i;

 for j := i+1 to n do

 {

 if (min > a[j]) then

 {

 min := a[j];

 loc :=j;

 }

 }

 temp := a[i]; a[i] := a[loc]; a[loc] := temp;
 }

}

Dr. R. Bhuvaneswari

Selection Sort

Periyar Govt. Arts College

Cuddalore 32

Number of comparisons in selection sort:

 (n-1) + (n-2) + (n-3) +……. + 2 + 1

 n(n-1)/2 comparisons

Dr. R. Bhuvaneswari

Strassen’s Matrix Multiplication

Periyar Govt. Arts College

Cuddalore 33

• Let A and B be two n x n matrices.

• The product matrix C = AB is also an n x n matrix whose i, jth element is

formed by taking the elements in the ith row of A and jth column of B and

multiplying them to get

 for all i and j between 1 and n.

• To compute C(i,j) using this formula, we need n multiplications.

• As the matrix C has n2 elements, the time for the resulting matrix

multiplication algorithm is O(n3).

 C11 = A11*B11+ A12 * B21

 C12 = A11*B12+ A12 * B22 8 multiplications and 4 additions

 C21 = A21*B11+ A22 * B21

 C22 = A21*B12+ A22 * B22

C i, j = A i, k B(k, j)

1≤k≤n

𝐶11 𝐶12

𝐶21 𝐶22
 =

𝐴11 𝐴12

𝐴21 𝐴22

𝐵11 𝐵12

𝐵21 𝐵22

Dr. R. Bhuvaneswari

Strassen’s Matrix Multiplication

Periyar Govt. Arts College

Cuddalore 34

• Divide and conquer method suggests another way to compute the product

of two n x n matrices.

• We assume that n is a power of 2.

• If n is not a power of two, then enough rows and columns of zeros can be

added to both A and B so that the resulting dimensions are power of 2.

• If n = 2, conventional matrix multiplication is performed.

• If n > 2, then the elements are partitioned into sub matrix n/2 x n/2.

• Since n is power of 2, these matrix products can be recursively computed

by the same algorithm we are using for the n x n case.

• The overall computing time T(n) of the resulting divide-and-conquer

algorithm is given by the recurrence

 where b and c are constants.

𝑇 𝑛 =
𝑏 𝑛 ≤ 2

8𝑇
𝑛

2
 + 𝑐𝑛2 𝑛 > 2

Dr. R. Bhuvaneswari

Strassen’s Matrix Multiplication

Periyar Govt. Arts College

Cuddalore 35

• Strassen showed that 2 x 2 matrix multiplication can be done in 7

multiplications and 18 additions or subtractions.

• This reduce can be done by divide and conquer approach.
 P = (A11 + A22)(B11 + B22)
 Q= (A21 + A22)B11

 R = A11(B12 – B22)
 S = A22(B21 – B11)
 T = (A11 + A12)B22

 U = (A21 – A11)(B11 + B12)
 V = (A12 – A22)(B21 + B22)
 C11 = P + S – T + V
 C12 = R + T
 C21 = Q + S
 C22 = P + R – Q + U

 The resulting recurrence relation for T(n) is

 where a and b are constants. T(n) = O(n2.81)

T n =
b n ≤ 2

7T
n

2
 + an2 n > 2

