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Divide and Conquer 

General Method: 

• Given a function to compute on ‘n’ inputs, divide-and-conquer 

strategy suggests splitting the inputs into ‘k’ distinct subsets, 

1<k≤n, yielding ‘k’ subproblems. 

• These subproblems must be solved, and then a method must be 

found to combine sub solutions into a solution of the whole. 

• If the subproblems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied. 

• For those cases the re-application of the divide-and-conquer 

principle is naturally expressed by a recursive algorithm. 
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Divide and Conquer 
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Control Abstraction of Divide and Conquer 

Algorithm DAndC(P) 

{ 

if small(P) then 

     return S(P); 

else 

{ 

    divide P into smaller instance P1, P2…….., Pk, k≥1; 

    apply DAndC to each of these subproblems; 

    return combine(DAndC(P1), DAndC(P2), ……., DAndC(Pk)); 

} 

} 
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Computing time of DAndC is: 

 

 

 

where  

T(n) is the time for DAndC on any input of size n 

g(n) is the time to compute the answer directly for small inputs 

f(n) is the time for dividing P and combining the solutions to 

subproblems 
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T n =  
g n                                                                           n small

T n1 +  T n2 + … . +T nk +  f n          otherwise
  



Dr. R. Bhuvaneswari 

Binary Search 

The following concept is used to search an element in the given array: 

• Find the middle element 

• Check the middle element with the element to be found. 

• If the middle element is equal to that element, then it will provide the 

output. 

• If the value is not same, then it will check whether the middle element 

value is less than or greater than the element to be found. 

• If the value is less than that element, then the search will start with the 

elements next to the middle element. 

• If the value is high than that element, then the search will start with the 

elements before the middle element. 

• This process continues, until that particular element has been found. 
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Binary Search 

• Let ai be a list of elements that are in non-decreasing order. 1≤i ≤n. 

• It is a problem of determining whether a given element x is present 

in the list. 
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mid = (low+high)/2                     x = 60 

1. low = 1, high = 10 

     mid = (1+10)/2 = 5,  60 > 50, low = 6 

2. low = 6, high = 10 

     mid = (6 + 10)/2 = 8, 60 < 80, high = 7 

3. low = 6, high = 7 

     mid = (6 + 7)/2 = 6 

10 20 30 40 50 60 70 80 90 100 

   1          2         3         4         5          6          7         8         9         10 

1.(x<a[mid] ) then  

      high = mid-1 

2.else if (x>a[mid]) then  

      low = mid+1 

3.else return mid; 
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Binary Search 

Algorithm BinSearch(a,n,x) 

//Given an array a[1:n] of elements in 

//nondecreasing order, n ≥ 0 

{ 

 low = 1; high = n; 

 while (low ≤ high) do 

 { 

      mid := (low+high)/2; 

      if (x < a[mid]) then high = mid-1; 

      else if (x > a[mid]) then low := mid+1; 

     else return mid; 

 } 

 return 0; 

} 
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10 20 30 40 50 60 70 80 90 100 

mid = (low+high)/2                     x = 30 

1. low = 1, high = 10 

     mid = (1+10)/2 = 5,  30 < 50, high = 4 

2. low = 1, high = 4 

     mid = (1 + 4)/2 = 2, 30 > 20, low = 3 

3. low = 3, high = 4 

     mid = (3 + 4)/2 = 3 

   1          2         3         4         5          6          7         8         9         10 
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Binary Search using recursion 

Algorithm BinSrch(a,i,l,x) 

{ 

if (l = i) then 

{ 

   if (x = a[i]) then return i; 

   else return 0; 

} 

else 

{ 

   mid = (i+l)/2; 

   if (x = a[mid]) then return mid; 

   else if (x < a[mid]) then return BinSrch(a,i,mid-1,x); 

          else return BinSrch(a,mid+1,l,x); 

} 

} Periyar Govt. Arts College 

Cuddalore 

10 20 30 40 50 60 70 80 90 100 

   1        2        3         4         5         6        7        8         9       10 

mid = (i+l)/2                     x = 30 

1. i = 1, l = 10 

     mid = (1+10)/2 = 5,  30 < 50, l = 4 

2. i = 1, l = 4 

     mid = (1 + 4)/2 = 2, 30 > 20, i = 3 

3. i = 3, l = 4 

     mid = (3 + 4)/2 = 3 
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Binary Search 
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Time Complexity 

1. If the search element is the middle element of the array, in this case, 

time complexity will be O(1), the best case.  

2. Otherwise, binary search algorithm breaks the array into half in each 

iteration. 

The array is divided by 2 until the array has only one element: 

   

 

we can rewrite it as: 

  n = 2k 

by taking log both side, we get 

  log2
n = log22

k 

  log2
n = klog2

2  

  k = log2
n (since loga

a = 1) 

The time complexity of binary search is log2
n 
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Finding the maximum and minimum 

• The problem to find the maximum and 

minimum items in a set of n elements. 

Algorithm StraightMaxMin(a,n,max,min) 

// set max to maximim and min to the 

// minimum of a[1:n] 

{ 

    max := min := a[1]; 

    for i := 2 to n do 

    { 

 if (a[i] > max) then max := a[i]; 

 if (a[i] < min) then min := a[i]; 

    } 

} 
• StraightMaxMin requires 2(n-1) element 

comparisons in the best, average and 
worst cases. Periyar Govt. Arts College 
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37 78 45 12 92 

  1          2        3        4        5 

max = min = 37 

i = 2 

max = 78; min = 37 

i = 3 

max = 78; min = 37 

i = 4 

max = 78; min =12 

i = 5 

max = 92; min = 12 
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Finding the maximum and minimum 

• An immediate improvement is possible by realizing that the 

comparison a[i] < min is necessary only when a[i] > max is false. 

     Hence we can replace the contents of the for loop by 

  if (a[i] > max) then max := a[i]; 

  else if (a[i] < min) then min := a[i]; 

• When the elements are in the increasing order the number of 

element comparisons is n-1. 

• When the elements are in the decreasing order the number of 

element comparisons is 2(n-1). 
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Finding the maximum and minimum 

Divide and Conquer Algorithm 

• Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. 

• Here ‘n’ is the no. of elements in the list (a[i],….,a[j]) and we are 

interested in finding the maximum and minimum of the list. 

• If the list has more than 2 elements, P has to be divided into smaller 

instances. 

• We divide ‘P’ into the 2 instances,  

P1=([n/2], a[1],……..a[n/2]) and 

P2= (n-[n/2], a[[n/2]+1],….., a[n])  

• After having divided ‘P’ into 2 smaller sub problems, we can solve them 

by recursively invoking the same divide-and-conquer algorithm. 

• max(P) is the maximum of max(P1) and max(P2) 

• min(P) is the minimum of min(P1) and min(P2) 
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Algorithm MaxMin(i,j,max,min) 

//a[1:n] is a global array. 

{ 

if (i = j) then max = min = a[i]; 

else if (i = j-1) then 

{ 

   if (a[i] < a[j]) then 

  { 

      max = a[j]; min = a[i]; 

   } 

   else 

  { 

      max = a[i]; min = a[j]; 

   } 

 } 

 else 

{{ 

    mid = (i+j)/2; 

     MaxMin(i,mid,max,min); 

     MaxMin(mid+1,j,max1,min1); 

     if(max < max1) then max = max1; 

     if (min > min1) then min = min1; 

   } 

} 
 

Finding the maximum and minimum 

Periyar Govt. Arts College 
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Finding the maximum and minimum 
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1, 9, 60,-8 

1, 5, 22, -8 6, 9, 60, 17 

1, 3, 22, -5 4, 5, 15, -8 6, 7, 60, 17 8, 9, 47, 31 

1, 2, 22, 13 3, 3, -5,-5 

mid = (1+9)/2  

       = 5 

mid = (1+5)/2  

       = 3 

mid = (1+3)/2  

        = 2 

mid = (6+9)/2  

       = 7 

Example: find max and min in the array:  

  22, 13, -5, -8, 15, 60, 17, 31, 47 ( n = 9 ) 

    

Index: 1          2         3          4          5          6          7          8          9 

Array: 22       13       -5        -8         15        60        17        31         47 
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Finding the maximum and minimum 
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The number of element comparisons T(n) is represented as recurrence 

relation 

 

 

 

When n is a power of two, n = 2k for some positive integer k, then                  

     T(n) = 2T(n/2)+2 

= 2(2T(n/4)+2)+2 

= 4T(n/4) + 4 + 2 

= 4(2T(n/8) + 2) +4 + 2 

= 8T(n/8) + 8 + 4 + 2 

    ……. 

= 2kT(n/2k) + 2k + 2k-1 + 2k-2 + …… + 2 

𝑇 𝑛 =   
𝑇  

𝑛

2
 +  𝑇  

𝑛

𝑛
 +  2                      𝑛 > 2

1                                                          𝑛 = 2
0                                                         𝑛 = 1
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 Taking T(2) = 1 

ie. 
𝑛

2𝑘
= 2 

T(n) = 2k + 2k + 2k-1 + 2k-2 + ……. + 2 

         = 2k +  2𝑗𝑘
𝑗=1  

         = 2k + 2 ∗ 
(2𝑘−1)

2−1
 

         = 
𝑛

2
+  2 ∗ (

𝑛

2
−  1) 

         = 
𝑛

2
+ 𝑛 − 2 

         = 
3𝑛

2
− 2 

Therefore, 3n/2- 2 is the best, average and worst case number of comparisons where 

n is power of 2. 

𝑆𝑖𝑛𝑐𝑒, 𝑥𝑗
𝑛

𝑗=1

= 𝑥 ∗
𝑥𝑛 − 1

𝑥 − 1
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Merge Sort 
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 Sort a sequence of n elements into non-decreasing order. 

 Merge sort is a sorting technique based on divide and conquer 

technique. 

 Merge sort first divides the unsorted list into two equal halves. 

 Sort each of the two sub lists recursively until we have list size 

of length 1, in which case the list itself is returned. 

 Merge the two sorted sub lists back into one sorted list. 
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Merge Sort 
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Merge Sort 
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Algorithm MergeSort(low,high) 

{ 

  If (low < high) then 

 {  

    mid = (low+high)/2; 

    MergeSort(low,mid); 

    MergeSort(mid+1,high); 

    Merge(low,mid,high); 

  } 

} 

1, 7 

1, 4 

1, 2 

1, 1 2, 2 

mid = 4 

mid = 2 

mid = 1 

38 27 43 3 9 82 10 
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Algorithm Merge(low,mid,high) 

//b[] is an auxiliary global array. 

{ 

  h=low; i=low; j=mid+1; 

  while((h≤mid) and (j≤high)) do 

  { 

     if(a[h] ≤ a[j]) then 

    { 

        b[i] = a[h]; h = h+1; 

    } 

    else 

    { 

        b[i] = a[j]; j = j+1; 

    } 

    i = i+1; 

  } 

  if(h > mid) then 

  { 

     for k = j to high do 

     { 

         b[i] = a[k]; i = i+1; 

     } 

  } 

  else 

  { 

     for k = h to mid do 

    { 

        b[i] = a[k]; i = i+1; 

     } 

  } 

  for k = low to high do 

         a[k] = b[k]; 

} 

Merge Sort 
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Merge Sort 
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𝑇 𝑛 =   
𝑎                                       𝑛 = 1, 𝑎 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2𝑇  
𝑛

2
 +  𝑐𝑛                   𝑛 > 1, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

  

Computing time for merge sort is described by the recurrence relation, 

 

 

 

when n = 2k 

 T(n)  = 2T(n/2) + cn 

  = 2[2T(n/4) + cn/2] + cn 

  = 4T(n/4) + cn + cn 

  = 4T(n/4) + 2cn 

  = 4[2T(n/8) + cn/4] + 2cn 

  = 8T(n/8) + cn + 2cn 

  = 8T(n/8) + 3cn 

      …………. 

  = 2kT(n/2k) + kcn 

  = 2kT(1) + kcn 

  = an + cnlogn 

Since,  

T(n/2k = 1) 

n = 2k 

log2
n = log22

k 

         = klog2
2 

         = k 
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Quick Sort 
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• In merge sort, the array a[1:n] was divided at its midpoint into 

sub arrays which were independently sorted and later merged. 

• In quick sort, the division into 2 sub arrays is made so that the 

sorted sub arrays do not need to be merged later. 

• This is accomplished by rearranging the elements in a[1:n] such 

that a[i] ≤ a[j] for all i between 1 and m and all j between (m+1) 

and n for some m, 1 ≤ m ≤ n. 

• Thus the elements in a[1:m] and a[m+1:n] can be independently 

sorted. 

• No merging is needed.  

• This rearranging is referred to as partitioning.  
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Quick Sort 
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• Quick sort picks an element as pivot element and partitions the 

given array around the  picked pivot.  

• There are many different versions of quick sort that pick pivot in 

different ways. 

 pick first element as pivot. 

 pick last element as pivot.  

 Pick a random element as pivot. 

 Pick median as pivot. 

• The role of the pivot value is to assist with splitting the list.  

• The actual position where the pivot value belongs in the final 

sorted list, commonly called the split point, will be used to divide 

the list for subsequent calls to the quick sort. 
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Quick Sort Example 
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Algorithm Quicksort(p,q) 

{ 

if (p<q) then 

  { 

     j:= Partititon (a,p,q+1); 

     Quicksort(p,j-1); 

     Quicksort(j+1,q); 

  } 

} 

 

Algorithm Partition(a,m,p) 

{ 

  v:=a[m]; i:=m; j:=p; 

  repeat 

 { 

    repeat 

         i:=i+1; 

    until (a[i] ≥ v); 

    repeat 

         j := j-1; 

    until (a[j] ≤ v); 

    if (i < j) then Interchange(a, i, j); 

  }until ( i ≥j); 

  a[m] := a[j]; 

  a[j] := v; 

  return j; 

} 

 

Algorithm Interchange(a, i, j) 

{ 

   p := a[i]; 

   a[i] := a[j]; 

   a[j] := p; 

} 

Quick Sort 

Periyar Govt. Arts College 
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Quick Sort 
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Computing time for Quick sort   

 T(n)  = 2T(n/2) + n for n > 1,   T(1) = 0 
 
 T(n)  = 2T(n/2) + n 

  = 2[2T(n/4) + n/2] + n 

  = 4T(n/4) + n + n 

  = 4T(n/4) + 2n 

  = 4[2T(n/8) + n/4] + 2n 

  = 8T(n/8) + n + 2n 

  = 8T(n/8) + 3n 

      …………. 

  = 2kT(n/2k) + kn 

  = nT(1) + kn 

  = nlogn 

Since,  

T(n/2k = 1) 

n = 2k 

log2
n = log22

k 

         = klog2
2 

         = k 
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• Selection sort is the most simplest sorting algorithm. 

• Following are the steps involved in selection sort(for sorting a 

given array in ascending order): 

 Starting from the first element, search the smallest element in 

the array, and replace it with the element in the first position. 

 Then move on to the second position, and look for smallest 

element present in the subarray, starting from index 2 till the 

last index. 

 Replace the element at the second position in the original 

array with the second smallest element. 

 This is repeated, until the array is completely sorted. 
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Selection Sort Example 
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Selection Sort 
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Algorithm Selection(a, n) 

{ 

   for i := 1 to n-1 do 

  { 

     min := a[i]; 

     loc := i; 

     for j := i+1 to n do 

     { 

         if (min > a[j] ) then 

        { 

 min := a[j]; 

 loc :=j; 

         } 

     } 

     temp := a[i]; a[i] := a[loc]; a[loc] := temp; 
  }  

} 
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Selection Sort 
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Number of comparisons in selection sort: 

 (n-1) + (n-2) + (n-3) +……. + 2 + 1 

 n(n-1)/2 comparisons  
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• Let A and B be two n x n matrices. 

• The product matrix C = AB is also an n x n matrix whose i, jth element is 

formed by taking the elements in the ith row of A and jth column of B and 

multiplying them to get  

                                                                    for all i and j between 1 and n. 

 

• To compute C(i,j) using this formula, we need n multiplications. 

• As the matrix C has n2 elements, the time for the resulting matrix 

multiplication algorithm is O(n3). 

 

 

       C11 = A11*B11+ A12 * B21 

       C12 = A11*B12+ A12 * B22 8 multiplications and 4 additions 

       C21 = A21*B11+ A22 * B21 

       C22 = A21*B12+ A22 * B22 

C i, j =   A i, k B(k, j)

1≤k≤n

 

 
𝐶11 𝐶12

𝐶21 𝐶22
 =   

𝐴11 𝐴12

𝐴21 𝐴22
  
𝐵11 𝐵12

𝐵21 𝐵22
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Strassen’s Matrix Multiplication 
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• Divide and conquer method suggests another way to compute the product 

of two n x n matrices. 

• We assume that n is a power of 2. 

• If n is not a power of two, then enough rows and columns of zeros can be 

added to both A and B so that the resulting dimensions are power of 2. 

• If n = 2, conventional matrix multiplication is performed. 

• If n > 2, then the elements are partitioned into sub matrix n/2 x n/2. 

• Since n is power of 2, these matrix products can be recursively computed 

by the same algorithm we are using for the n x n case. 

• The overall computing time T(n) of the resulting divide-and-conquer 

algorithm is given by the recurrence 

 

 

    where b and c are constants. 

𝑇 𝑛 =  
𝑏                                            𝑛 ≤ 2

8𝑇  
𝑛

2
 +  𝑐𝑛2                     𝑛 > 2
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Strassen’s Matrix Multiplication 
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• Strassen showed that 2 x 2 matrix multiplication can be done in 7 

multiplications and 18 additions or subtractions. 

• This reduce can be done by divide and conquer approach. 
  P = (A11 + A22)(B11 + B22) 
  Q= (A21 + A22)B11 

  R = A11(B12 – B22) 
  S = A22(B21 – B11) 
  T = (A11 + A12)B22 

  U = (A21 – A11)(B11 + B12) 
  V = (A12 – A22)(B21 + B22) 
 C11 = P + S – T + V 
 C12 = R + T 
 C21 = Q + S 
 C22 = P + R – Q + U 

    The resulting recurrence relation for T(n) is  

 

 
 
    where a and b are constants. T(n) = O(n2.81) 

T n =  
b                                            n ≤ 2

7T  
n

2
 +  an2                     n > 2

  


