
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - III

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Greedy Method

Syllabus

UNIT - III: THE GREEDY METHOD

The General Method - Knapsack Problem – Tree Vertex Splitting -

Job Sequencing with Deadlines - Minimum Cost Spanning Trees -

Optimal Storage on Tapes - Optimal Merge Pattern - Single Source

Shortest Paths.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj

Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.

2

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Greedy Method

General Method:

• In the method, problems have n inputs and requires to obtain a

subset that satisfies some constraints.

• Any subset that satisfies these constraints is called feasible

solution.

• A feasible solution should either maximizes or minimizes a given

objective function is called an optimal solution.

• The greedy technique in which selection of input leads to optimal

solution is called subset paradigm.

• If the selection does not lead to optimal subset, then the decisions

are made by considering the inputs in some order. This type of

greedy method is called ordering paradigm.

3

Dr. R. Bhuvaneswari

Greedy Method

Periyar Govt. Arts College

Cuddalore

Control Abstraction of Greedy Method

Algorithm Greedy(a,n)

// a[1:n] contains n inputs

{

 solution := 0;

 for i :=1 to n do

 {

 x := select(a);

 if feasible(solution, x) then

 solution := Union(solution,x);

 }

 return solution;

}

4

Dr. R. Bhuvaneswari

Knapsack Problem

Periyar Govt. Arts College

Cuddalore

• Given a set of items, each with a weight and a profit, determine the

number of each item to include in a collection so that the total weight is

less than or equal to a given limit and the total profit is as large as

possible.

• Items are divisible; you can take any fraction of an item.

• And it is solved using greedy method.

5

Dr. R. Bhuvaneswari

Knapsack Problem

Periyar Govt. Arts College

Cuddalore

• Given n objects and a knapsack or bag.

• wi → weight of object i.

• m → knapsack capacity.

• If a fraction xi, 0 ≤ xi ≤1 of object i is placed into the knapsack, then a

profit of pixi is earned.

• Objective is to fill the knapsack that maximizes the total profit earned.

• Problem can be stated as

• A feasible solution is any set (x1 …. xn) satisfying equations ② and ③.
• An optimal solution is a feasible solution for which equation ① is

maximized.

6

subject to wixi ≤ m − − − − − ②

1≤ i ≤n

0 ≤ xi ≤ 1, 1 ≤ i ≤ n − − − − −③

maximize pi

1 ≤ i ≤n

xi − − − − − ①

Dr. R. Bhuvaneswari

Knapsack Problem

Periyar Govt. Arts College

Cuddalore 7

Example: n = 3, m = 20

 (x1, x2, x3) Σwixi Σpixi

1. (1/2, 1/3, 1/4) 16.5 24.25

2. (1, 2/15, 0) 20 28.2

3. (0, 2/3, 1) 20 31

4. (0, 1, 1/2) 20 31.5

5. (2/3, 8/15, 0) 20 29.5

6. (5/6, 1/3, 0) 20 28.8

Among all the feasible solutions yields the maximum profit

Weight wi 18 15 10

Profits pi 25 24 15

④

Dr. R. Bhuvaneswari

Knapsack Problem

Periyar Govt. Arts College

Cuddalore 8

The greedy algorithm:

Step 1: Sort pi/wi into nonincreasing order.

Step 2: Put the objects into the knapsack according to the sorted
sequence as possible as we can.

e. g.

n = 3, M = 20

(w1, w2, w3) = (18, 15, 10)

(p1, p2, p3) = (25, 24, 15)

Sol: p1/w1 = 25/18 = 1.39

 p2/w2 = 24/15 = 1.6

 p3/w3 = 15/10 = 1.5

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

Weight wi 15 10 18

Profits pi 24 15 25

Dr. R. Bhuvaneswari

Knapsack Problem

Periyar Govt. Arts College

Cuddalore 9

Algorithm GreedyKnapsack(m, n)

//n objects are ordered such that p[i]/w[i] ≥ p[i+1]/w[i+1].

{

 for i:= 1 to n do x[i] := 0.0;

 U := m;

 for i := 1 to n do

 {

 if (w[i] > U) then break;

 x[i] :=1.0;

 U := U-w[i];

 }

 if (i ≤ n) then

 x[i] = U/w[i];

}

Weight wi 15 10 18

Profits pi 24 15 25

x[1] = 0.0 m = 20, n = 3

x[2] = 0.0

x[3] = 0.0

U = 20

i = 1

x[1] = 1; U = 5

i = 2, 10 > 5

x[2] = 5/10 = 1/2

x[1] = 1, x[2] = 1/2, x[3] = 0

Dr. R. Bhuvaneswari

Tree Vertex Splitting

Periyar Govt. Arts College

Cuddalore 10

• Weighted directed binary trees are considered.

• The nodes in the tree correspond to the receiving stations and edges

correspond to transmission lines.

• The transmission of power from node to another may result in some loss.

• Each edge in the tree is labeled with the loss that occurs in traversing that

edge.

• The network may not be able to tolerate losses beyond a certain limit.

• In places where the loss exceeds the tolerance level, boosters have to be

placed.

Given a network and a loss tolerance level, the Tree Vertex Splitting

Problem is to determine an optimal placement of boosters.

• T = (V, E, W)

 V is the set of vertices

 E is the set of edges

 w is the weight function for the edges

Dr. R. Bhuvaneswari

Tree Vertex Splitting

Periyar Govt. Arts College

Cuddalore 11

• A vertex with in-degree zero is called a source vertex

• A vertex with out-degree zero is called a sink vertex

• Let T/X be the forest that results when each vertex u is split into two

nodes ui and uo such that all the edges u, j E (j, u E) are replaced

by the edges of the form uo, j (j, ui)

• A greedy approach to solve this problem is to compute for each node

u V, the maximum delay d(u) from u to any other node in its subtree.

• If u has a parent v such that

 d(u) + w(v, u) > , then the node u gets split and d(u) is set to 0.

 where C(u) is the set of all children of u.

d u = max
 𝑣∈𝐶(𝑢)

{ 𝑑 𝑣 + 𝑊(𝑢, 𝑣)}

Dr. R. Bhuvaneswari

Tree Vertex Splitting

Periyar Govt. Arts College

Cuddalore 12

 = 5

d(4) = 4.

since, d(4) + w(2,4) = 6 > , node 4

is split and d(4) = 0.

since, d(2) + w(1,2) = 6 > , node 2

is split and d(2) = 0.

since, d(6) + w(3,6) = 6 > , node 6

is split and d(6) = 0.

Dr. R. Bhuvaneswari

Tree Vertex Splitting

Periyar Govt. Arts College

Cuddalore 13

Algorithm TVS(T,)

{

 if (T 0) then

 {

 d[T] = 0;
 for each child v to T do

 {

 TVS(v,);

 d[T] = max{d[T], d[v]+w[T,v]};

 }

 if ((T is not the root) and (d[T] + w(parent(t), T) >)) then

 {

 write(T);

 d[T] = 0;

 }

 }

}

Dr. R. Bhuvaneswari

Job sequencing with deadlines

Periyar Govt. Arts College

Cuddalore 14

The problem is stated as below:

• There are n jobs to be processed on a machine.

• Each job i has a deadline di ≥ 0 and profit pi ≥0 .

• Pi is earned if and only if the job is completed by its deadline.

• The job is completed if it is processed on a machine for unit time.

• Only one machine is available for processing jobs.

• Only one job is processed at a time on the machine.

• A feasible solution is a subset of jobs J such that each job is

completed by its deadline.

• An optimal solution is a feasible solution with maximum profit value

 𝑃𝑖

𝑖 ∈ 𝐽

Dr. R. Bhuvaneswari

Job sequencing with deadlines

Periyar Govt. Arts College

Cuddalore 15

General method of job sequencing algorithm

Algorithm GreedyJob(d, J, n)

{

 J := {1};

 for i := 2 to n do

 {

 if (all jobs in J {i} can be completed by their deadlines) then

 J := J {i};

 }

}

Dr. R. Bhuvaneswari

Job sequencing with deadlines

Periyar Govt. Arts College

Cuddalore 16

Example: Let n = 4, maximum deadline dmax = 2

(p1, p2, p3, p4) = (100,10,15,27)

(d1, d2, d3, d4) = (2,1,2,1)

 Feasible solution processing sequence value

1. (1, 2) 2, 1 110

2. (1, 3) 1, 3 or 3, 1 115

3. (1, 4) 4, 1 127

4. (2, 3) 2, 3 25

5. (3, 4) 4, 3 42

6. (1) 1 100

7. (2) 2 10

8. (3) 3 15

9. (4) 4 27

Dr. R. Bhuvaneswari

Job sequencing with deadlines

Periyar Govt. Arts College

Cuddalore 17

Example 1: Let n = 4, maximum deadline dmax = 2

(p1, p2, p3, p4) = (100,10,15,27)

(d1, d2, d3, d4) = (2,1,2,1)

 0 1 2

 27 + 100 = 127

Example 2: Let n = 5, maximum deadline dmax = 3

(p1, p2, p3, p4, p5) = (20, 15, 10, 5, 1)

(d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3)

 0 1 2 3

 15 + 20 + 5 = 40

Example 3: Let n = 6, maximum deadline dmax = 4

(p1, p2, p3, p4, p5, p6) = (35, 30, 25, 20, 15, 12, 5)

(d1, d2, d3, d4, d5, d6) = (3, 4, 4, 2, 3, 1, 2)

 0 1 2 3 4

 20 + 25+ 35+ 30 = 110

J4 J1

J2 J1 J4

J4 J3 J1 J2

Dr. R. Bhuvaneswari

Algorithm JS(d, j, n)

// the jobs are ordered such that

p[1] p[2] …… p[n].

{

 d[0] = J[0] = 0;

 J[1] = 1;

 k = 1;

 for i = 2 to n do

 {

 r = k;

 while ((d[J[r]] > d[i]) and (d[J[r]] r)) do

 r = r-1;

 if((d[J[r]] d[i]) and (d[i] > r)) then

 {

 for q = k to (r+1) step -1 do

 J[q+1] = J[q];

 J[r+1] = i;

 k = k+1;

}

}

return k;

}

Job sequencing with deadlines

Periyar Govt. Arts College

Cuddalore 18

Dr. R. Bhuvaneswari

Minimum Cost Spanning Trees

Periyar Govt. Arts College

Cuddalore 19

• Given an undirected and connected graph G = (V, E), a spanning tree of

the graph G is a subset of graph G, which has all the vertices connected

by minimum number of edges.

• The cost of the spanning tree is the sum of the weights of all the edges in

the tree. There can be many spanning trees.

• A Minimum Spanning Tree (MST) is a subset of edges of a connected

weighted undirected graph that connects all the vertices together with

the minimum possible total edge weight.

• There also can be many minimum spanning trees.

• There are two famous algorithms for finding the Minimum Spanning

Tree:

 Prim’s Algorithm

 Kruskal’s Algorithm

Dr. R. Bhuvaneswari

MST – Prim’s Algorithm

Periyar Govt. Arts College

Cuddalore 20

• Prim's Algorithm is used to find the minimum spanning tree from a

graph.

• Prim's algorithm finds the subset of edges that includes every vertex of

the graph such that the sum of the weights of the edges can be

minimized.

• Prim's algorithm starts with the single node and explore all the adjacent

nodes with all the connecting edges at every step.

• The edges with the minimal weights causing no cycles in the graph are

selected.

• Algorithm steps:

Step 1: Select a starting vertex.

Step 2: Repeat Steps 3 and 4 until there are vertices not in the tree.

Step 3: Select an edge e connecting the tree vertex and the vertex that

is not in the tree has minimum weight.

Step 4: Add the selected edge and the vertex to the minimum

spanning tree T

Step 5: Exit

Dr. R. Bhuvaneswari

MST – Prim’s Algorithm

Periyar Govt. Arts College

Cuddalore 21

1

6 7 3

2

4

5

28

16

12
18

24

14

22

25

10

1

6 7 3

2

4

5

16

12

14

22

25

10

Dr. R. Bhuvaneswari

MST – Prim’s Algorithm

Periyar Govt. Arts College

Cuddalore 22

Algorithm Prim(E, cost, n, t)

// E is the set of edges in G. cost[1:n, 1:n] is the cost adjacency matrix of

//an n vertex graph such that cost[i, j] is either a positive real number or

//if no edge (i, j) exists. A minimum spanning tree is computed and stored

//as a set of edges in the array t[1:n-1, 1:2]. The final cost is returned.

{

 Let (k, l) be an edge of minimum cost in E;

 mincost = cost[k, l];

 t[1, 1] = k; t[1, 2] = l;

 for i = 1 to n do

 {

 if (cost[i, l] < cost[i, k]) then near[i] = l;

 else near[i] = k;

 }

 near[k] = near[l] = 0;

1 2 3 4 5 6 7

1 28 10

2 28 16 14

3 16 12

4 12 22 18

5 22 25 24

6 10 25

7 14 18 24

Dr. R. Bhuvaneswari

MST – Prim’s Algorithm

Periyar Govt. Arts College

Cuddalore 23

 for i = 2 to n-1 do

 {

 // find n-2 additional edges for t. Let j be an index such that near[j] 0

//and cost[j, near[j]] is minimum;

 t[i, 1] = j;

 t[i, 2] = near[j];

 mincost = mincost + cost[j, near[j]];

 near[j] = 0;

 for k = 1 to n do

 {

 if ((near[k] 0) and (cost[k, near[k]] > cost[k, j])) then

 near[k] = j;

 }

 }

return mincost;

}

Dr. R. Bhuvaneswari

Optimal Storage on tapes

Periyar Govt. Arts College

Cuddalore 24

• n programs are to be stored on a computer tape of length l.

• Associated with each program i is a length li, 1 i n.

• If the programs are stored in the order I = i1, i2, ….. in, the time tj needed

to retrieve the program ij is

• If all the programs are retrieved equally often, then the Mean Retrieval

Time (MRT) is

• Minimizing the MRT is equivalent to minimizing

 lik

1 ≤k ≤j

1

𝑛
 𝑡𝑗

1 ≤𝑗 ≤𝑛

d I = lik

1 ≤k ≤j1 ≤j ≤ n

Dr. R. Bhuvaneswari

Optimal Storage on tapes

Periyar Govt. Arts College

Cuddalore 25

Example:

n = 3,

(l1, l2, l3) = (5, 10, 3)

n! = 6 possible ordering

 Ordering I d(I)

 1, 2, 3 5+5+10+5+10+3 = 38

 1, 3, 2 5+5+3+5+3+5+10 = 31

 2, 1, 3 10+10+5+10+5+3 = 43

 2, 3, 1 10+10+3+10+3+5 = 41

 3, 1, 2 3+3+5+3+5+10 = 29

 3, 2, 1 3+3+10+3+10+5 = 34

Optimal ordering is 3, 1, 2

Thus the greedy method implies to store the programs in nondecreasing

order of their length.

Dr. R. Bhuvaneswari

Optimal Storage on tapes

Periyar Govt. Arts College

Cuddalore 26

For more than one tape, example,

{12, 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 45} on three tapes with MRT

minimized, store files in non-decreasing length.

{11, 12, 24, 34, 34, 34, 45, 56, 56, 73, 78, 91}

Algorithm Store(n, m)

// n is the number of programs and m the number of tapes.

{

 j = 0;

 for i = 1 to n do

 {

 write(“append program “, i, “to permutation for tape “, j);

 j = (j+1) mod m;

 }

}
Tape 0 11 34 45 73

Tape 1 12 34 56 78

Tape 2 24 34 56 91

Dr. R. Bhuvaneswari

Optimal Merge patterns

Periyar Govt. Arts College

Cuddalore 27

• Merge a set of sorted files of different length into a single sorted file.

• We need to find an optimal solution, where the resultant file will be

generated in minimum time.

• If the number of sorted files are given, there are many ways to merge

them into a single sorted file. This merge can be performed pair wise.

Hence, this type of merging is called as 2-way merge patterns.

• As, different pairings require different amounts of time, in this strategy we

want to determine an optimal way of merging many files together. At each

step, two shortest sequences are merged.

• To merge a m-record file and a n-record file requires possibly m + n

record moves

• Merge the two smallest files together at each step.

• Two-way merge patterns can be represented by binary merge trees.

• Initially, each element is considered as a single node binary tree.

Dr. R. Bhuvaneswari

Optimal Merge patterns

Periyar Govt. Arts College

Cuddalore 28

File/list A B C D

sizes 6 5 2 3

6 5 2 3

11

13

16

6 5 2 3

5

10

16

11+13+16 = 40

6 5 2 3

11 5

16

11+5+16 = 32 5+10+16 = 31

 (a) (b) (c)

Dr. R. Bhuvaneswari

Optimal Merge patterns

Periyar Govt. Arts College

Cuddalore 29

lists x1 x2 x3 x4 x5

sizes 20 30 10 5 30

15+35+95+60 = 205

dixi = 3x5 + 3x10 +2x20 +2x30 + 2x30

 = 205

lists x1 x2 x3 x4 x5

sizes 2 3 5 7 9

5+10+16+26 = 57

dixi = 3x2 + 3x3 +2x5 +2x7 + 2x9

 = 57

Dr. R. Bhuvaneswari

Optimal Merge patterns

Periyar Govt. Arts College

Cuddalore 30

• The algorithm has as input a list list of n trees.

• Each node in a tree has three fields, lchild, rchild and weight.

• Initially, each tree in list has exactly one node and has lchild and rchild fields

zero whereas weight is the length of one of the n files to be merged.

Algorithm Tree(n)

{

 for i = 1 to n-1 do

 {

 pt = new treenode;

 ptlchild = Least(list);

 ptrchild = Least(list);

 ptweight = ptlchildweight + ptlchildweight;
 insert(list,pt);

 }

 return Least(list);

}

treenode = record

{

 treenode *lchild;

 treenode *rchild;

 integer weight;

};

Dr. R. Bhuvaneswari

Optimal Merge patterns

Periyar Govt. Arts College

Cuddalore 31

Function Tree uses two functions: Least(list) and Insert(list, t).

• Least(list) finds a tree in list whose root has least weight and returns a pointer

to the tree. This tree is removed from list.

• Insert(list, t) inserts the tree with root t into list.

Dr. R. Bhuvaneswari

Single-source shortest path

Periyar Govt. Arts College

Cuddalore 32

• Given a edge-weighted graph G = (V, E) and a vertex v V, find the

shortest weighted path from v to every other vertex in V.

• Dijkstra’s Algorithm is a greedy algorithm for solving the single-source

shortest-path problem on an edge-weighted graph in which all the weights

are non-negative.

• It finds the shortest paths from some initial vertex, say v, to all the other

vertices one-by-one.

• The paths are discovered in the order of their weighted lengths, starting with

the shortest, and proceeding to the longest.

• For each vertex v, Dijkstra’s algorithm keeps track of three pieces of

information, kv, dv and pv.

• The Boolean valued flag kv indicates that the shortest path to vertex v.

Initially, kv = false for all v V.

• The quantity dv is the length of the shortest known path from v0 to v. When

the algorithm begins, no shortest paths are known. The distance dv, is a

tentative distance.

Dr. R. Bhuvaneswari

Single-source shortest path

Periyar Govt. Arts College

Cuddalore 33

• During the course of the algorithm candidate paths are examined and the

tentative distances are modified.

• Initially dv = for all v V such that v ≠ v0, while dv0 = 0.

• The predecessor of the vertex v on the shortest path from v0 to v is pv.

Initially, pv is unknown for all v V.

• The following steps are performed in each pass:

1. From the set of vertices for with kv = false, select the vertex v

having the smallest tentative distance dv.

2. Set kv true.

3. For each vertex w adjacent to v for which kv ≠ true, test whether

the tentative distance dv is greater than dv + C(v,w). If it is, set

 dw dv + C(v,w) and set pw v.

• In each pass exactly one vertex has its kv set to true. The algorithm

terminates after |V| passes are completed at which time all the shortest

paths are known.

Dr. R. Bhuvaneswari

Single-source shortest path

Periyar Govt. Arts College

Cuddalore 34

Initially:

S = {1}; D[2] = 10; D[3] = ; D[4] = 30; D[5] = 100

Iteration 1

Select w = 2, so that S = {1, 2}

D[3] = min(, D[2] + C[2, 3]) = 60

D[4] = min(30, D[2] + C[2, 4]) = 30

D[5] = min(100, D[2] + C[2, 5]) = 100

Iteration 2

Select w = 4, so that S = {1, 2, 4}

D[3] = min(60, D[4] + C[4, 3]) = 50

D[5] = min(100, D[4] + C[4, 5]) = 90

Iteration 3

Select w = 3, so that S = {1, 2, 4, 3}

D[5] = min(90, D[3] + C[3, 5]) = 60

 Iteration 4

Select w = 5, so that S = {1, 2, 4, 3, 5}

 D[2] = 10; D[3] = 50; D[4] = 30; D[5] = 60

