Design and Analysis of Algorithms

Unit - III

Dr. R. Bhuvaneswari
Assistant Professor
Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Greedy Method

Syllabus

UNIT - III: THE GREEDY METHOD
The General Method - Knapsack Problem - Tree Vertex Splitting Job Sequencing with Deadlines - Minimum Cost Spanning Trees Optimal Storage on Tapes - Optimal Merge Pattern - Single Source Shortest Paths.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.

Greedy Method

General Method:

- In the method, problems have n inputs and requires to obtain a subset that satisfies some constraints.
- Any subset that satisfies these constraints is called feasible solution.
- A feasible solution should either maximizes or minimizes a given objective function is called an optimal solution.
- The greedy technique in which selection of input leads to optimal solution is called subset paradigm.
- If the selection does not lead to optimal subset, then the decisions are made by considering the inputs in some order. This type of greedy method is called ordering paradigm.

Greedy Method

```
Control Abstraction of Greedy Method
Algorithm Greedy(a,n)
// a[1:n] contains n inputs
{
    solution := 0;
    for i:=1 to n do
    {
        x := select(a);
        if feasible(solution, x) then
            solution := Union(solution,x);
    }
    return solution;
}
```


Knapsack Problem

- Given a set of items, each with a weight and a profit, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total profit is as large as possible.
- Items are divisible; you can take any fraction of an item.
- And it is solved using greedy method.

Knapsack Problem

- Given n objects and a knapsack or bag.
- $\mathrm{w}_{\mathrm{i}} \rightarrow$ weight of object i.
- m \rightarrow knapsack capacity.
- If a fraction $\mathrm{x}_{\mathrm{i}}, 0 \leq \mathrm{x}_{\mathrm{i}} \leq 1$ of object i is placed into the knapsack, then a profit of $\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ is earned.
- Objective is to fill the knapsack that maximizes the total profit earned.
- Problem can be stated as

$$
\begin{aligned}
& \operatorname{maximize} \sum_{1 \leq i \leq n} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}---- \text { (1) } \\
& \text { subject to } \sum_{1 \leq i \leq n} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \leq \mathrm{m}----- \text { (2) } \\
& \quad 0 \leq \mathrm{x}_{\mathrm{i}} \leq 1,1 \leq \mathrm{i} \leq \mathrm{n} \quad---- \text {-(3) }
\end{aligned}
$$

- A feasible solution is any set $\left(x_{1} \ldots x_{n}\right)$ satisfying equations (2) and (3).
- An optimal solution is a feasible solution for which equation (1) is maximized.

Knapsack Problem

Example: $\mathrm{n}=3, \mathrm{~m}=20$

Weight $_{\mathrm{i}}$	18	15	10
Profits p_{i}	25	24	15

	$\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$	$\sum \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\sum \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
1.	$(1 / 2,1 / 3,1 / 4)$	16.5	24.25
2.	$(1,2 / 15,0)$	20	28.2
3.	$(0,2 / 3,1)$	20	31
4.	$(0,1,1 / 2)$	20	31.5
5.	$(2 / 3,8 / 15,0)$	20	29.5
6.	$(5 / 6,1 / 3,0)$	20	28.8

Among all the feasible solutions (4) yields the maximum profit

Knapsack Problem

The greedy algorithm:

Step 1: Sort $\mathrm{p}_{\mathrm{i}} / \mathrm{w}_{\mathrm{i}}$ into nonincreasing order.
Step 2: Put the objects into the knapsack according to the sorted sequence as possible as we can.
e. g.

$$
\begin{aligned}
& \mathrm{n}=3, \mathrm{M}=20 \\
& \left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=(18,15,10) \\
& \left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right)=(25,24,15) \\
& \text { Sol: } \quad \mathrm{p}_{1} / \mathrm{w}_{1}=25 / 18=1.39 \\
& \\
& \\
& \quad \mathrm{p}_{2} / \mathrm{w}_{2}=24 / 15=1.6 \\
& \\
& \quad \mathrm{p}_{3} / \mathrm{w}_{3}=15 / 10=1.5
\end{aligned}
$$

Optimal solution: $\mathrm{x}_{1}=0, \mathrm{x}_{2}=1, \mathrm{x}_{3}=1 / 2$

Knapsack Problem

Algorithm GreedyKnapsack(m, n)

$/ / \mathrm{n}$ objects are ordered such that $\mathrm{p}[\mathrm{i}] / \mathrm{w}[\mathrm{i}] \geq \mathrm{p}[\mathrm{i}+1] / \mathrm{w}[\mathrm{i}+1]$. \{
for $\mathrm{i}:=1$ to n do $\mathrm{x}[\mathrm{i}]:=0.0$;
$\mathrm{U}:=\mathrm{m}$;
for $\mathrm{i}:=1$ to n do
\{
if ($\mathrm{w}[\mathrm{i}]>\mathrm{U}$) then break;
$\mathrm{x}[\mathrm{i}]:=1.0$;
$\mathrm{U}:=\mathrm{U}-\mathrm{w}[\mathrm{i}]$;
\}
if $(\mathrm{i} \leq \mathrm{n})$ then
$\mathrm{x}[\mathrm{i}]=\mathrm{U} / \mathrm{w}[\mathrm{i}]$;
\}

Weight $_{\mathrm{i}}$	15	10	18
Profits p_{i}	24	15	25

$\mathrm{x}[1]=0.0 \quad \mathrm{~m}=20, \mathrm{n}=3$
$\mathrm{x}[2]=0.0$
$\mathrm{x}[3]=0.0$
$\mathrm{U}=20$
$\mathrm{i}=1$
$\mathrm{x}[1]=1 ; \mathrm{U}=5$
$\mathrm{i}=2,10>5$
$\mathrm{x}[2]=5 / 10=1 / 2$
$\mathrm{x}[1]=1, \mathrm{x}[2]=1 / 2, \mathrm{x}[3]=0$

Tree Vertex Splitting

- Weighted directed binary trees are considered.
- The nodes in the tree correspond to the receiving stations and edges correspond to transmission lines.
- The transmission of power from node to another may result in some loss.
- Each edge in the tree is labeled with the loss that occurs in traversing that edge.
- The network may not be able to tolerate losses beyond a certain limit.
- In places where the loss exceeds the tolerance level, boosters have to be placed.
Given a network and a loss tolerance level, the Tree Vertex Splitting Problem is to determine an optimal placement of boosters.
- $\mathbf{T}=(\mathbf{V}, \mathbf{E}, \mathbf{W})$
$>\mathrm{V}$ is the set of vertices
$>\mathrm{E}$ is the set of edges
$>\mathrm{w}$ is the weight function for the edges

Tree Vertex Splitting

- A vertex with in-degree zero is called a source vertex
- A vertex with out-degree zero is called a sink vertex
- Let T/X be the forest that results when each vertex u is split into two nodes u^{i} and u^{0} such that all the edges $\langle u, j\rangle \in E(\langle j, u\rangle \in E)$ are replaced by the edges of the form $\left\langle\mathrm{u}^{\mathrm{o}}, \mathrm{j}\right\rangle\left(\left\langle\mathrm{j}, \mathrm{u}^{\mathrm{i}}\right\rangle\right)$
- A greedy approach to solve this problem is to compute for each node $u \in V$, the maximum delay $d(u)$ from u to any other node in its subtree.
- If u has a parent v such that $d(u)+w(v, u)>\delta$, then the node u gets split and $d(u)$ is set to 0 .

$$
\mathrm{d}(\mathrm{u})=\max _{v \in C(u)}\{d(v)+W(u, v)\}
$$

where $C(u)$ is the set of all children of u.

Tree Vertex Splitting

$\delta=5$
$\mathrm{d}(4)=4$. since, $\mathrm{d}(4)+\mathrm{w}(2,4)=6>\delta$, node 4 is split and $\mathrm{d}(4)=0$. since, $\mathrm{d}(2)+\mathrm{w}(1,2)=6>\delta$, node 2 is split and $\mathrm{d}(2)=0$. since, $\mathrm{d}(6)+\mathrm{w}(3,6)=6>\delta$, node 6 is split and $d(6)=0$.

Tree Vertex Splitting

Algorithm TVS(T, δ)
\{
if $(T \neq 0)$ then
\{
$\mathrm{d}[\mathrm{T}]=0$;
for each child v to T do
\{
TVS(v, δ);
$\mathrm{d}[\mathrm{T}]=\max \{\mathrm{d}[\mathrm{T}], \mathrm{d}[\mathrm{v}]+\mathrm{w}[\mathrm{T}, \mathrm{v}]\} ;$
\}
if $((\mathrm{T}$ is not the root $)$ and $(\mathrm{d}[\mathrm{T}]+\mathrm{w}(\operatorname{parent}(\mathrm{t}), \mathrm{T})>\delta))$ then \{
write(T);
$\mathrm{d}[\mathrm{T}]=0$;
\}
\}
\}

Job sequencing with deadlines

The problem is stated as below:

- There are n jobs to be processed on a machine.
- Each job i has a deadline $\mathrm{d}_{\mathrm{i}} \geq 0$ and profit $\mathrm{p}_{\mathrm{i}} \geq 0$.
- P_{i} is earned if and only if the job is completed by its deadline.
- The job is completed if it is processed on a machine for unit time.
- Only one machine is available for processing jobs.
- Only one job is processed at a time on the machine.
- A feasible solution is a subset of jobs \mathbf{J} such that each job is completed by its deadline.

$$
\sum_{i \in J} P_{i}
$$

- An optimal solution is a feasible solution with maximum profit value

Job sequencing with deadlines

General method of job sequencing algorithm

Algorithm GreedyJob(d, J, n)
\{
$\mathrm{J}:=\{1\} ;$
for $\mathrm{i}:=2$ to n do
\{
if (all jobs in $\mathbf{J} \cup\{\mathrm{i}\}$ can be completed by their deadlines) then

$$
\mathrm{J}:=\mathrm{J} \cup\{\mathrm{i}\} ;
$$

\}
\}

Job sequencing with deadlines

Example: Let $\mathrm{n}=4$, maximum deadline dmax $=2$

$\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=(100,10,15,27)$		
$\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=(2,1,2,1)$		
Feasible solution	processing sequence	value
1. $(1,2)$	2,1	110
2. $(1,3)$	1,3 or 3,1	115
3. $(1,4)$	4,1	127
4. $(2,3)$	2,3	25
5. $(3,4)$	4,3	42
6. (1)	1	100
7. (2)	2	10
8. (3)	3	15
9. (4)	4	27

Job sequencing with deadlines

Example 1: Let $\mathrm{n}=4$, maximum deadline dmax $=2$
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}\right)=(100,10,15,27)$
$\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}\right)=(2,1,2,1)$

$$
27+100=127
$$

Example 2: Let $\mathrm{n}=5$, maximum deadline $\mathrm{dmax}=3$
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}\right)=(20,15,10,5,1)$
$\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}, \mathrm{~d}_{5}\right)=(2,2,1,3,3)$

$$
15+20+5=40
$$

Example 3: Let $\mathrm{n}=6$, maximum deadline dmax $=4$
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}\right)=(35,30,25,20,15,12,5)$
$\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}, \mathrm{~d}_{5}, \mathrm{~d}_{6}\right)=(3,4,4,2,3,1,2)$

0		1	3		4
J4	J3	J1	J2		

Job sequencing with deadlines

```
Algorithm JS(d, j, n)
// the jobs are ordered such that
\(\mathrm{p}[1] \geq \mathrm{p}[2] \geq \ldots \ldots \geq \mathrm{p}[\mathrm{n}]\).
\{
    \(\mathrm{d}[0]=\mathrm{J}[0]=0 ;\)
    \(\mathrm{J}[1]=1\);
    \(\mathrm{k}=1\);
    for \(\mathrm{i}=2\) to n do
    \{
        \(\mathrm{r}=\mathrm{k}\);
        while ((d[J[r]] > d[i] ) and (d[J[r]] \(=\mathrm{r})\) ) do
        \(\mathrm{r}=\mathrm{r}-1\);
        \(\operatorname{if}((\mathrm{d}[\mathrm{J}[\mathrm{r}]] \leq \mathrm{d}[\mathrm{i}])\) and \((\mathrm{d}[\mathrm{i}]>\mathrm{r}))\) then
        \{
        for \(\mathrm{q}=\mathrm{k}\) to \((\mathrm{r}+1)\) step -1 do
\(\mathrm{J}[\mathrm{q}+1]=\mathrm{J}[\mathrm{q}]\)
\(\mathrm{J}[\mathrm{r}+1]=\mathrm{i} ;\)
    \(\mathrm{k}=\mathrm{k}+1\);
\}
\}
return k;
\}
```


Minimum Cost Spanning Trees

- Given an undirected and connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a spanning tree of the graph G is a subset of graph G, which has all the vertices connected by minimum number of edges.
- The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be many spanning trees.
- A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected graph that connects all the vertices together with the minimum possible total edge weight.
- There also can be many minimum spanning trees.
- There are two famous algorithms for finding the Minimum Spanning Tree:
> Prim's Algorithm
> Kruskal's Algorithm

MST - Prim's Algorithm

- Prim's Algorithm is used to find the minimum spanning tree from a graph.
- Prim's algorithm finds the subset of edges that includes every vertex of the graph such that the sum of the weights of the edges can be minimized.
- Prim's algorithm starts with the single node and explore all the adjacent nodes with all the connecting edges at every step.
- The edges with the minimal weights causing no cycles in the graph are selected.
- Algorithm steps:

Step 1: Select a starting vertex.
Step 2: Repeat Steps 3 and 4 until there are vertices not in the tree.
Step 3: Select an edge e connecting the tree vertex and the vertex that is not in the tree has minimum weight.
Step 4: Add the selected edge and the vertex to the minimum spanning tree \mathbf{T}
Step 5: Exit

MST - Prim's Algorithm

21 Dr. R. Bhuvaneswari

MST - Prim's Algorithm

Algorithm Prim(E, cost, n, t)
$/ / E$ is the set of edges in G. cost[1:n, $1: n]$ is the cost adjacency matrix of $/ / a n n$ vertex graph such that cost $[i, j]$ is either a positive real number or ∞ //if no edge (i, j) exists. A minimum spanning tree is computed and stored //as a set of edges in the array $\mathrm{t}[1: \mathrm{n}-1,1: 2]$. The final cost is returned.
\{
Let (k, l) be an edge of minimum cost in E;
mincost $=\operatorname{cost}[k, 1]$;
$\mathrm{t}[1,1]=\mathrm{k} ; \mathrm{t}[1,2]=1$;
for $\mathrm{i}=1$ to n do
\{
if $(\operatorname{cost}[\mathrm{i}, \mathrm{l}]<\operatorname{cost}[\mathrm{i}, \mathrm{k}])$ then near $[\mathrm{i}]=1$;
else near[i] $=k$;
\}
near $[k]=$ near $[1]=0$;

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	∞	28	∞	∞	∞	10	∞
$\mathbf{2}$	28	∞	16	∞	∞	∞	14
$\mathbf{3}$	∞	16	∞	12	∞	∞	∞
$\mathbf{4}$	∞	∞	12	∞	22	∞	18
$\mathbf{5}$	∞	∞	∞	22	∞	25	24
$\mathbf{6}$	10	∞	∞	∞	25	∞	∞
$\mathbf{7}$	∞	14	∞	18	24	∞	∞

MST - Prim's Algorithm

```
for i=2 to n-1 do
{
    // find n-2 additional edges for t. Let j be an index such that near[j] }\not=
    //and cost[j, near[j]] is minimum;
        t[i, 1] = j;
        t[i, 2] = near[j];
        mincost = mincost + cost[j, near[j]];
        near[j] = 0;
        for k=1 to n do
        {
            if ((near[k]\not=0) and (cost[k, near[k]] > cost[k, j])) then
                near[k] = j;
        }
    }
return mincost;
}

\section*{Optimal Storage on tapes}
- n programs are to be stored on a computer tape of length 1 .
- Associated with each program i is a length \(\mathrm{l}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}\).
- If the programs are stored in the order \(\mathrm{I}=\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots \ldots \mathrm{i}_{\mathrm{n}}\), the time \(\mathrm{t}_{\mathrm{j}}\) needed to retrieve the program \(\mathrm{i}_{\mathrm{j}}\) is \(\sum_{1 \leq \mathrm{k} \leq} \mathrm{l}_{\mathrm{ik}}\)
- If all the programs are retrieved equally often, then the Mean Retrieval Time (MRT) is \(\frac{1}{n} \sum_{1<j \leq n} t_{j}\)
- Minimizing the MRT is equivalent to minimizing \(d(I)=\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq 1} \mathrm{l}_{\mathrm{ik}}\)

\section*{Optimal Storage on tapes}

\section*{Example:}
\(\mathrm{n}=3\),
\(\left(l_{1}, l_{2}, l_{3}\right)=(5,10,3)\)
\(\mathrm{n}!=6\) possible ordering
\begin{tabular}{lll} 
Ordering I & \(\mathbf{d}(\mathbf{I})\) & \\
\(1,2,3\) & \(5+5+10+5+10+3\) & \(=38\) \\
\(1,3,2\) & \(5+5+3+5+3+5+10\) & \(=31\) \\
\(2,1,3\) & \(10+10+5+10+5+3\) & \(=43\) \\
\(2,3,1\) & \(10+10+3+10+3+5\) & \(=41\) \\
\(3,1,2\) & \(3+3+5+3+5+10\) & \(=29\) \\
\(3,2,1\) & \(3+3+10+3+10+5\) & \(=34\)
\end{tabular}

Optimal ordering is \(3,1,2\)
Thus the greedy method implies to store the programs in nondecreasing order of their length.

\section*{Optimal Storage on tapes}

For more than one tape, example, \(\{12,34,56,73,24,11,34,56,78,91,34,45\}\) on three tapes with MRT minimized, store files in non-decreasing length. \(\{11,12,24,34,34,34,45,56,56,73,78,91\}\)

Algorithm Store(n, m) \(/ / \mathrm{n}\) is the number of programs and m the number of tapes. \{
    \(\mathrm{j}=0\);
    for \(\mathrm{i}=1\) to n do
    \{
        write("append program ", i, "to permutation for tape ", \(j\) );
        \(j=(j+1) \bmod m ;\)
\(\}\)
\(\}\)
\begin{tabular}{|l|l|l|l|l|}
\hline Tape 0 & 11 & 34 & 45 & 73 \\
\hline Tape 1 & 12 & 34 & 56 & 78 \\
\hline Tape 2 & 24 & 34 & 56 & 91 \\
\hline
\end{tabular}

\section*{Optimal Merge patterns}
- Merge a set of sorted files of different length into a single sorted file.
- We need to find an optimal solution, where the resultant file will be generated in minimum time.
- If the number of sorted files are given, there are many ways to merge them into a single sorted file. This merge can be performed pair wise. Hence, this type of merging is called as 2-way merge patterns.
- As, different pairings require different amounts of time, in this strategy we want to determine an optimal way of merging many files together. At each step, two shortest sequences are merged.
- To merge a m-record file and a n-record file requires possibly \(\mathbf{m}+\mathbf{n}\) record moves
- Merge the two smallest files together at each step.
- Two-way merge patterns can be represented by binary merge trees.
- Initially, each element is considered as a single node binary tree.

\section*{Optimal Merge patterns}
\begin{tabular}{|l|l|l|l|l|}
\hline File/list & A & B & C & D \\
\hline sizes & 6 & 5 & 2 & 3 \\
\hline
\end{tabular}
(a)

\(11+13+16=40\)

\(11+5+16=32\)
(c)
(b)

\(5+10+16=31\)

\section*{Optimal Merge patterns}
\begin{tabular}{|l|c|c|c|c|c|}
\hline lists & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) \\
\hline sizes & 20 & 30 & 10 & 5 & 30 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline lists & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) \\
\hline sizes & 2 & 3 & 5 & 7 & 9 \\
\hline
\end{tabular}

\[
\begin{aligned}
& 15+35+95+60=205 \\
& \begin{aligned}
\Sigma \mathrm{d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} & =3 \times 5+3 \times 10+2 \times 20+2 \times 30+2 \times 30 \\
& =205
\end{aligned}
\end{aligned}
\]

\[
5+10+16+26=57
\]
\[
\begin{aligned}
\Sigma \mathrm{d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} & =3 \times 2+3 \times 3+2 \times 5+2 \times 7+2 \times 9 \\
& =57
\end{aligned}
\]

\section*{Optimal Merge patterns}
- The algorithm has as input a list list of n trees.
- Each node in a tree has three fields, lchild, rchild and weight.
- Initially, each tree in list has exactly one node and has lchild and rchild fields zero whereas weight is the length of one of the \(n\) files to be merged.
```

Algorithm Tree(n)
{
for i=1 to n-1 do
{
pt = new treenode;
pt }->\mathrm{ lchild = Least(list);
pt }->\mathrm{ rchild = Least(list);
pt }->\mathrm{ weight = pt }->\mathrm{ lchild }->\mathrm{ weight }+\textrm{pt}->\mathrm{ lchild }->\mathrm{ weight;
insert(list,pt);
}
return Least(list);
}

```
```

treenode = record
{
treenode *lchild;
treenode *rchild;
integer weight;
};

```

\section*{Optimal Merge patterns}

\section*{Function Tree uses two functions: Least(list) and Insert(list, t .}
- Least(list) finds a tree in list whose root has least weight and returns a pointer to the tree. This tree is removed from list.
- Insert(list, t ) inserts the tree with root t into list.

\section*{Single-source shortest path}
- Given a edge-weighted graph \(G=(\mathrm{V}, \mathrm{E})\) and a vertex \(\mathrm{v} \in \mathrm{V}\), find the shortest weighted path from v to every other vertex in V .
- Dijkstra's Algorithm is a greedy algorithm for solving the single-source shortest-path problem on an edge-weighted graph in which all the weights are non-negative.
- It finds the shortest paths from some initial vertex, say v , to all the other vertices one-by-one.
- The paths are discovered in the order of their weighted lengths, starting with the shortest, and proceeding to the longest.
- For each vertex v, Dijkstra's algorithm keeps track of three pieces of information, \(\mathrm{k}_{\mathrm{v}}, \mathrm{d}_{\mathrm{v}}\) and \(\mathrm{p}_{\mathrm{v}}\).
- The Boolean valued flag \(\mathrm{k}_{\mathrm{v}}\) indicates that the shortest path to vertex v . Initially, \(\mathrm{k}_{\mathrm{v}}=\) false for all \(\mathrm{v} \in \mathrm{V}\).
- The quantity \(\mathrm{d}_{\mathrm{v}}\) is the length of the shortest known path from \(\mathrm{v}_{0}\) to v . When the algorithm begins, no shortest paths are known. The distance \(\mathrm{d}_{\mathrm{v}}\), is a tentative distance.

\section*{Single-source shortest path}
- During the course of the algorithm candidate paths are examined and the tentative distances are modified.
- Initially \(d_{v}=\infty\) for all \(v \in V\) such that \(v \neq v_{0}\), while \(d_{v 0}=0\).
- The predecessor of the vertex \(v\) on the shortest path from \(v_{0}\) to \(v\) is \(p_{v}\). Initially, \(p_{v}\) is unknown for all \(v \in V\).
- The following steps are performed in each pass:
1. From the set of vertices for with \(\mathrm{k}_{\mathrm{v}}=\) false, select the vertex v having the smallest tentative distance \(\mathrm{d}_{\mathrm{v}}\).
2. Set \(\mathrm{k}_{\mathrm{v}} \leftarrow\) true.
3. For each vertex w adjacent to v for which \(\mathrm{k}_{\mathrm{v}} \neq\) true, test whether the tentative distance \(\mathrm{d}_{\mathrm{v}}\) is greater than \(\mathrm{d}_{\mathrm{v}}+\mathrm{C}(\mathrm{v}, \mathrm{w})\). If it is, set \(\mathrm{d}_{\mathrm{w}} \leftarrow \mathrm{d}_{\mathrm{v}}+\mathrm{C}(\mathrm{v}, \mathrm{w})\) and set \(\mathrm{p}_{\mathrm{w}} \leftarrow \mathrm{v}\).
- In each pass exactly one vertex has its \(\mathrm{k}_{\mathrm{v}}\) set to true. The algorithm terminates after \(|\mathrm{V}|\) passes are completed at which time all the shortest paths are known.

\section*{Single-source shortest path}

\section*{Initially:}
\(S=\{1\} ; D[2]=10 ; D[3]=\infty ; D[4]=30 ; D[5]=100\)
Iteration 1
Select \(w=2\), so that \(S=\{1,2\}\)
\(D[3]=\min (\infty, D[2]+C[2,3])=60\)
\(D[4]=\min (30, D[2]+C[2,4])=30\)
\(D[5]=\min (100, D[2]+C[2,5])=100\)
Iteration 2
Select \(w=4\), so that \(S=\{1,2,4\}\)
\(D[3]=\min (60, D[4]+C[4,3])=50\)
\(D[5]=\min (100, D[4]+C[4,5])=90\)


Iteration 3
Select \(w=3\), so that \(S=\{1,2,4,3\}\)
\(D[5]=\min (90, D[3]+C[3,5])=60\)

\section*{Iteration 4}

Select \(w=5\), so that \(S=\{1,2,4,3,5\}\)
\[
D[2]=10 ; D[3]=50 ; D[4]=30 ; D[5]=60
\]

Dr. R. Bhuvaneswari```

