
Dr. R. Bhuvaneswari 

Periyar Govt. Arts College 

Cuddalore 

Design and Analysis of 

Algorithms 

Dr. R. Bhuvaneswari 
Assistant Professor 

Department of Computer Science 
Periyar Govt. Arts College, Cuddalore. 

Unit - III 

1 



Dr. R. Bhuvaneswari 
Periyar Govt. Arts College 

Cuddalore 

Greedy Method 

Syllabus 

UNIT - III: THE GREEDY METHOD  

The General Method - Knapsack Problem – Tree Vertex Splitting - 

Job Sequencing with Deadlines - Minimum Cost Spanning Trees - 

Optimal Storage on Tapes - Optimal Merge Pattern - Single Source 

Shortest Paths.  

 

 

 

TEXT BOOK  

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj 

Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.  

2 



Dr. R. Bhuvaneswari 
Periyar Govt. Arts College 

Cuddalore 

Greedy Method 

General Method: 

• In the method, problems have n inputs and requires to obtain a 

subset that satisfies some constraints. 

• Any subset that satisfies these constraints is called feasible 

solution. 

• A feasible solution should either maximizes or minimizes a given 

objective function is called an optimal solution. 

• The greedy technique in which selection of input leads to optimal 

solution is called subset paradigm. 

• If the selection does not lead to optimal subset, then the decisions 

are made by considering the inputs in some order. This type of 

greedy method is called ordering paradigm. 
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Control Abstraction of Greedy Method 

Algorithm Greedy(a,n) 

// a[1:n] contains n inputs 

{ 

  solution := 0; 

  for i :=1 to n do 

 { 

    x := select(a); 

    if feasible(solution, x) then 

 solution := Union(solution,x); 

  } 

  return solution; 

} 
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• Given a set of items, each with a weight and a profit, determine the 

number of each item to include in a collection so that the total weight is 

less than or equal to a given limit and the total profit is as large as 

possible. 

• Items are divisible; you can take any fraction of an item. 

• And it is solved using greedy method. 

5 



Dr. R. Bhuvaneswari 

Knapsack Problem 

Periyar Govt. Arts College 

Cuddalore 

• Given n objects and a knapsack or bag. 

• wi → weight of object i. 

• m → knapsack capacity. 

• If a fraction xi, 0 ≤ xi ≤1 of object i is placed into the knapsack, then a 

profit of pixi is earned. 

• Objective is to fill the knapsack that maximizes the total profit earned. 

• Problem can be stated as 

 

 

 

 

 

 
 
• A feasible solution is any set (x1 …. xn) satisfying equations ② and ③. 
• An optimal solution is a feasible solution for which equation ① is 

maximized. 
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subject to  wixi  ≤ m − − − − − ② 

1≤ i ≤n

  

0 ≤ xi ≤ 1, 1 ≤ i ≤ n    − − − − −③ 

maximize  pi

1 ≤ i ≤n

xi       − − − − − ① 



Dr. R. Bhuvaneswari 

Knapsack Problem 

Periyar Govt. Arts College 

Cuddalore 7 

Example: n = 3, m = 20 

 

 

 

 (x1, x2, x3)  Σwixi  Σpixi 

1. (1/2, 1/3, 1/4)  16.5 24.25 

2. (1, 2/15, 0) 20 28.2 

3. (0, 2/3, 1) 20 31 

4. (0, 1, 1/2)   20 31.5 

5. (2/3, 8/15, 0) 20 29.5 

6. (5/6, 1/3, 0) 20 28.8  

Among all the feasible solutions       yields the maximum profit 

Weight wi 18 15 10 

Profits pi 25 24 15 

④ 
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The greedy algorithm:  

Step 1: Sort pi/wi into nonincreasing order.  

Step 2: Put the objects into the knapsack according to the sorted 
sequence as possible as we can.  

e. g. 

n = 3, M = 20 

(w1, w2, w3) = (18, 15, 10)  

(p1, p2, p3) = (25, 24, 15)  

Sol:  p1/w1 = 25/18 = 1.39  

  p2/w2 = 24/15 = 1.6  

  p3/w3 = 15/10 = 1.5  

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2  

 

Weight wi 15 10 18 

Profits pi 24 15 25 
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Algorithm GreedyKnapsack(m, n) 

//n objects are ordered such that p[i]/w[i] ≥ p[i+1]/w[i+1]. 

{ 

   for i:= 1 to n do x[i] := 0.0; 

   U := m; 

   for i := 1 to n do 

   { 

       if (w[i] > U) then break; 

       x[i] :=1.0; 

       U := U-w[i]; 

   } 

   if (i ≤ n) then  

       x[i] = U/w[i]; 

} 

Weight wi 15 10 18 

Profits pi 24 15 25 

x[1] = 0.0        m = 20, n = 3 

x[2] = 0.0 

x[3] = 0.0 

U = 20 

i = 1 

x[1] = 1; U = 5 

i = 2, 10 > 5 

x[2] = 5/10 = 1/2 

x[1] = 1, x[2] = 1/2, x[3] = 0 
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• Weighted directed binary trees are considered. 

• The nodes in the tree correspond to the receiving stations and edges 

correspond to transmission lines. 

• The transmission of power from node to another may result in some loss. 

• Each edge in the tree is labeled with the loss that occurs in traversing that 

edge. 

• The network may not be able to tolerate losses beyond a certain limit. 

• In places where the loss exceeds the tolerance level, boosters have to be 

placed. 

Given a network and a loss tolerance level, the Tree Vertex Splitting 

Problem is to determine an optimal placement of boosters. 

• T = (V, E, W) 

 V is the set of vertices  

 E is the set of edges  

 w is the weight function for the edges  
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• A vertex with in-degree zero is called a source vertex  

• A vertex with out-degree zero is called a sink vertex 

• Let T/X be the forest that results when each vertex u is split into two 

nodes ui and uo such that all the edges u, j  E (j, u  E) are replaced 

by the edges of the form uo, j  (j, ui)  

• A greedy approach to solve this problem is to compute for each node      

u  V, the maximum delay d(u) from u to any other node in its subtree. 

• If u has a parent v such that  

 d(u) + w(v, u) > , then the node u gets split and d(u) is set to 0. 

 

 

    where C(u) is the set of all children of u. 

d u = max
                     𝑣∈𝐶(𝑢  )

{ 𝑑 𝑣 +  𝑊(𝑢, 𝑣)} 
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 = 5 

d(4) = 4.  

since, d(4) + w(2,4) = 6 > , node 4 

is split and d(4) = 0.  

since, d(2) + w(1,2) = 6 > , node 2 

is split and d(2) = 0.  

since, d(6) + w(3,6) = 6 > , node 6 

is split and d(6) = 0. 
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Algorithm TVS(T, ) 

{ 

   if (T  0) then 

  { 

     d[T] = 0; 
     for each child v to T do 

     { 

          TVS(v, ); 

          d[T] = max{d[T], d[v]+w[T,v]}; 

     } 

     if ((T is not the root) and (d[T] + w(parent(t), T) > )) then 

    { 

           write(T); 

           d[T] = 0; 

    } 

  } 

} 
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The problem is stated as below: 

• There are n jobs to be processed on a machine. 

• Each job i has a deadline di ≥ 0 and profit pi ≥0 . 

• Pi is earned if and only if the job is completed by its deadline. 

• The job is completed if it is processed on a machine for unit time. 

• Only one machine is available for processing jobs.  

• Only one job is processed at a time on the machine.  

• A feasible solution is a subset of jobs J such that each job is 

completed by its deadline. 

 

 

• An optimal solution is a feasible solution with maximum profit value 

 𝑃𝑖

𝑖 ∈ 𝐽
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General method of job sequencing algorithm 

Algorithm GreedyJob(d, J, n) 

{ 

  J := {1}; 

  for i := 2 to n do 

  { 

     if (all jobs in J  {i} can be completed by their deadlines) then 

  J := J  {i}; 

  } 

} 
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Example: Let n = 4, maximum deadline dmax = 2 

(p1, p2, p3, p4 ) = (100,10,15,27) 

(d1, d2, d3, d4 ) = (2,1,2,1) 

 Feasible solution processing sequence value 

1. (1, 2)   2, 1   110 

2. (1, 3)   1, 3 or 3, 1  115 

3. (1, 4)   4, 1   127 

4. (2, 3)   2, 3   25 

5. (3, 4)   4, 3   42 

6. (1)   1   100 

7. (2)   2   10 

8. (3)   3   15 

9. (4)   4   27 
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Example 1: Let n = 4, maximum deadline dmax = 2 

(p1, p2, p3, p4 ) = (100,10,15,27) 

(d1, d2, d3, d4 ) = (2,1,2,1) 

               0             1              2 

                                                        27 + 100 = 127 

Example 2: Let n = 5, maximum deadline dmax = 3 

(p1, p2, p3, p4, p5) = (20, 15, 10, 5, 1) 

(d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3) 

               0             1             2             3 

                                                                  15 + 20 + 5 = 40 

Example 3: Let n = 6, maximum deadline dmax = 4 

(p1, p2, p3, p4, p5, p6) = (35, 30, 25, 20, 15, 12, 5) 

(d1, d2, d3, d4, d5, d6) = (3, 4, 4, 2, 3, 1, 2) 

 0            1             2            3             4                  

                                                                20 + 25+ 35+ 30 = 110 

J4 J1 

J2 J1 J4 

J4 J3 J1 J2 



Dr. R. Bhuvaneswari 

Algorithm JS(d, j, n) 

// the jobs are ordered such that  

p[1]  p[2]  ……  p[n]. 

{ 

  d[0] = J[0] = 0; 

  J[1] = 1; 

  k = 1; 

  for i = 2 to n do 

  { 

     r = k; 

     while ((d[J[r]] > d[i] ) and (d[J[r]]  r)) do 

                r = r-1; 

     if((d[J[r]]  d[i]) and (d[i] > r)) then 

    { 

         for q = k to (r+1) step -1 do 

               J[q+1] = J[q]; 

  J[r+1] = i; 

  k = k+1; 

} 

} 

return k; 

} 
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• Given an undirected and connected graph G = (V, E), a spanning tree of 

the graph G is a subset of graph G, which has all the vertices connected 

by minimum number of edges. 

• The cost of the spanning tree is the sum of the weights of all the edges in 

the tree. There can be many spanning trees.  

• A Minimum Spanning Tree (MST) is a subset of edges of a connected 

weighted undirected graph that connects all the vertices together with 

the minimum possible total edge weight.  

• There also can be many minimum spanning trees. 

• There are two famous algorithms for finding the Minimum Spanning 

Tree: 

 Prim’s Algorithm 

 Kruskal’s Algorithm 
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• Prim's Algorithm is used to find the minimum spanning tree from a 

graph.  

• Prim's algorithm finds the subset of edges that includes every vertex of 

the graph such that the sum of the weights of the edges can be 

minimized. 

• Prim's algorithm starts with the single node and explore all the adjacent 

nodes with all the connecting edges at every step.  

• The edges with the minimal weights causing no cycles in the graph are 

selected. 

• Algorithm steps: 

Step 1: Select a starting vertex. 

Step 2: Repeat Steps 3 and 4 until there are vertices not in the tree. 

Step 3: Select an edge e connecting the tree vertex and the vertex that 

is not in the tree has minimum weight. 

Step 4: Add the selected edge and the vertex to the minimum 

spanning tree T 

Step 5: Exit 
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Algorithm Prim(E, cost, n, t) 

// E is the set of edges in G. cost[1:n, 1:n] is the cost adjacency matrix of  

//an n vertex graph such that cost[i, j] is either a positive real number or  

//if  no edge (i, j) exists. A minimum spanning tree is computed and stored 

//as a set of edges in the array t[1:n-1, 1:2]. The final cost is returned. 

{ 

   Let (k, l) be an edge of minimum cost in E; 

   mincost = cost[k, l]; 

   t[1, 1] = k; t[1, 2] = l; 

   for i = 1 to n do 

  { 

     if (cost[i, l] < cost[i, k]) then near[i] = l; 

     else near[i] = k; 

  } 

  near[k] = near[l] = 0; 

1 2 3 4 5 6 7 

1  28    10  

2 28  16    14 

3  16  12    

4   12  22  18 

5    22  25 24 

6 10    25   

7  14  18 24   
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  for i = 2 to n-1 do 

  { 

   // find n-2 additional edges for t. Let j be an index such that near[j]  0            

//and cost[j, near[j]] is minimum;   

     t[i, 1] = j; 

     t[i, 2] = near[j]; 

     mincost = mincost + cost[j, near[j]]; 

     near[j] = 0; 

     for k = 1 to n do 

    { 

         if ((near[k]  0) and (cost[k, near[k]] > cost[k, j])) then 

 near[k] = j; 

    } 

  } 

return mincost; 

} 
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• n programs are to be stored on a computer tape of length l. 

• Associated with each program i is a length li, 1  i  n. 

• If the programs are stored in the order I = i1, i2, ….. in, the time tj needed 

to retrieve the program ij is  

 

• If all the programs are retrieved equally often, then the Mean Retrieval 

Time (MRT) is 

  

• Minimizing the MRT is equivalent to minimizing 

 

 lik

1 ≤k ≤j

 

1

𝑛
 𝑡𝑗

1 ≤𝑗  ≤𝑛

 

d I =    lik

1 ≤k ≤j1 ≤j ≤ n
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Example: 

n = 3,  

(l1, l2, l3) = (5, 10, 3) 

n! = 6 possible ordering 

 Ordering I d(I) 

 1, 2, 3  5+5+10+5+10+3  = 38 

 1, 3, 2  5+5+3+5+3+5+10  = 31 

 2, 1, 3  10+10+5+10+5+3 = 43 

 2, 3, 1  10+10+3+10+3+5 = 41 

 3, 1, 2  3+3+5+3+5+10  = 29 

 3, 2, 1  3+3+10+3+10+5  = 34 

Optimal ordering is 3, 1, 2 

Thus the greedy method implies to store the programs in nondecreasing 

order of their length. 
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For more than one tape, example,  

{12, 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 45} on three tapes with MRT 

minimized, store files in non-decreasing length. 

{11, 12, 24, 34, 34, 34, 45, 56, 56, 73, 78, 91} 

 

Algorithm Store(n, m) 

// n is the number of programs and m the number of tapes. 

{ 

  j = 0; 

  for i = 1 to n do 

  { 

      write(“append program “, i, “to permutation for tape “, j); 

      j = (j+1) mod m; 

  } 

} 
Tape 0 11 34 45 73 

Tape 1 12 34 56 78 

Tape 2 24 34 56 91 
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• Merge a set of sorted files of different length into a single sorted file.  

• We need to find an optimal solution, where the resultant file will be 

generated in minimum time. 

• If the number of sorted files are given, there are many ways to merge 

them into a single sorted file. This merge can be performed pair wise. 

Hence, this type of merging is called as 2-way merge patterns. 

• As, different pairings require different amounts of time, in this strategy we 

want to determine an optimal way of merging many files together. At each 

step, two shortest sequences are merged. 

• To merge a m-record file and a n-record file requires possibly m + n 

record moves 

• Merge the two smallest files together at each step. 

• Two-way merge patterns can be represented by binary merge trees.  

• Initially, each element is considered as a single node binary tree.  
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File/list A B C D 

sizes 6 5 2 3 

6 5 2 3 

11 

13 

16 

6 5 2 3 

5 

10 

16 

11+13+16 = 40 

6 5 2 3 

11 5 

16 

11+5+16 = 32 5+10+16 = 31 

              (a)                                              (b)                                          (c) 
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lists x1 x2 x3 x4 x5 

sizes 20 30 10 5 30 

15+35+95+60 = 205 

dixi = 3x5 + 3x10 +2x20 +2x30 + 2x30  

         = 205 

lists x1 x2 x3 x4 x5 

sizes 2 3 5 7 9 

5+10+16+26 = 57 

dixi = 3x2 + 3x3 +2x5 +2x7 + 2x9  

         = 57 
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• The algorithm has as input a list list of n trees. 

• Each node in a tree has three fields, lchild, rchild and weight. 

• Initially, each tree in list has exactly one node and has lchild and rchild fields 

zero whereas weight is the length of one of the n files to be merged. 

 

Algorithm Tree(n) 

{ 

   for i = 1 to n-1 do 

  { 

     pt = new treenode; 

     ptlchild = Least(list); 

     ptrchild = Least(list); 

     ptweight = ptlchildweight + ptlchildweight; 
     insert(list,pt); 

  } 

  return Least(list); 

}  

treenode = record 

{ 

   treenode *lchild; 

   treenode *rchild; 

   integer weight; 

}; 
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Function Tree uses two functions: Least(list) and Insert(list, t). 

• Least(list) finds a tree in list whose root has least weight and returns a pointer 

to the tree. This tree is removed from list. 

• Insert(list, t) inserts the tree with root t into list. 
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• Given a edge-weighted graph G = (V, E) and a vertex v  V, find the 

shortest weighted path from v to every other vertex in V. 

• Dijkstra’s Algorithm is a greedy algorithm for solving the single-source 

shortest-path problem on an edge-weighted graph in which all the weights 

are non-negative.  

• It finds the shortest paths from some initial vertex, say v, to all the other 

vertices one-by-one.  

• The paths are discovered in the order of their weighted lengths, starting with 

the shortest, and proceeding to the longest. 

• For each vertex v, Dijkstra’s algorithm keeps track of three pieces of 

information, kv, dv and pv.  

• The Boolean valued flag kv indicates that the shortest path to vertex v. 

Initially, kv = false for all v  V.  

• The quantity dv is the length of the shortest known path from v0 to v. When 

the algorithm begins, no shortest paths are known. The distance dv, is a 

tentative distance. 
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• During the course of the algorithm candidate paths are examined and the 

tentative distances are modified.  

• Initially dv =  for all v  V such that v ≠ v0, while dv0 = 0.  

• The predecessor of the vertex v on the shortest path from v0 to v is pv. 

Initially, pv is unknown for all v  V. 

• The following steps are performed in each pass: 

1. From the set of vertices for with kv = false, select the vertex v 

having the smallest tentative distance dv. 

2. Set kv  true. 

3. For each vertex w adjacent to v for which kv ≠ true, test whether 

the tentative distance dv is greater than dv + C(v,w). If it is, set  

 dw  dv + C(v,w) and set pw  v. 

• In each pass exactly one vertex has its kv set to true. The algorithm 

terminates after |V| passes are completed at which time all the shortest 

paths are known. 
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Initially: 

S = {1};  D[2] = 10;  D[3] = ; D[4] = 30;  D[5] = 100 

Iteration 1 

Select w = 2, so that S = {1, 2} 

D[3] = min(, D[2] + C[2, 3]) = 60 

D[4] = min(30, D[2] + C[2, 4]) = 30 

D[5] = min(100, D[2] + C[2, 5]) = 100 

Iteration 2 

Select w = 4, so that S = {1, 2, 4} 

D[3] = min(60, D[4] + C[4, 3]) = 50 

D[5] = min(100, D[4] + C[4, 5]) = 90 

Iteration 3 

Select w = 3, so that S = {1, 2, 4, 3} 

D[5] = min(90, D[3] + C[3, 5]) = 60 

 Iteration 4 

Select w = 5, so that S = {1, 2, 4, 3, 5} 

 D[2] = 10; D[3] = 50; D[4] = 30; D[5] = 60 


