
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - IV

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Dynamic Programming

General Method:

• It is an algorithm design method that can be used when the solution to a

problem can be viewed as a sequence of decisions.

• It obtains the solution using “Principle of Optimality”.

• It states that “ In an optimal sequence of decisions or choices, each

subsequence must also be optimal”, ie., whatever the initial state and

decision are, the remaining decisions must constitute an optimal

decision sequence.

• The difference between the greedy method and dynamic programming

is that in the greedy method only one decision sequence is ever

generated.

• In dynamic programming, many decision sequences may be generated.

• Sequences containing suboptimal subsequences cannot be optimal and

so will not be generated.

2

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore

• A multistage graph G = (V, E) is a directed graph in which the vertices

are partitioned into k  2 disjoint sets Vi, 1  i  k.

• If u, v is an edge in E, then u  Vi and v  Vi+1.

• The sets V1 and Vk are such that |V1| = |Vk| = 1.

• The vertex s is the source and the t the sink (destination).

• The multistage graph problem is to find a minimum cost path from s to t.

• The cost of s to t is the sum of the cost of the edges on the path.

• The multistage graph problem can be solved in 2 ways.

Forward method

Backward method

3

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore

Forward Approach

• In the forward approach, the cost of each and every node is found

starting from the k stage to the 1st stage.

• The minimum cost path from the source to destination is found ie.,

stage 1 to stage k.

• For forward approach,

 Cost(i ,j) = min{c(j, l) + cost(i+1, l)}

 lVi+1

 j, lE

 where i is the level number.

4

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 5

V1 V2 V3 V4 V5

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 6

Min. Cost

cost(5,12) 0 0

cost(4,9) min{c(9,12)+cost(5,12)} = {4 + 0} 4

cost(4,10) min{c(10,12)+cost(5,12)} = {2 + 0} 2

cost(4,11) min{c(11,12)+cost(5,12)} = {5+ 0} 5

cost(3,6) min{c(6,9)+cost(4,9), c(6,10)+cost(4,10)}
= min{6+ 4, 5+2}

7

cost(3,7) min{c(7,9)+cost(4,9), c(7,10)+cost(4,10)}
= min{4+4, 3+2}

5

cost(3,8) min{c(8,10)+cost(4,10), c(8,11)+cost(4,11)}
= min{5+2, 6+5}

7

Cost(i ,j) = min{c(j, l) + cost(i+1, l)}

 lVi+1

 j, lE

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 7

Min. Cost

cost(2,2) min{c(2,6)+cost(3,6), c(2,7)+cost(3,7),
 c(2,8)+cost(3,8)}
= min{4+7, 2+5, 1+7}

7

cost(2,3) min{c(3,6)+cost(3,6), c(3,7)+cost(3,7)}
= min{2+7, 7+5}

9

cost(2,4) min{c(4,8)+cost(3,8)}
= min{11+7}

18

cost(2,5) min{c(5,7)+cost(3,7), c(5,8)+cost(3,8)}
= min{11+5, 8+7}

15

cost(1,1) min{c(1,2)+cost(2,2), c(1,3)+cost(2,3),
 c(1,4)+cost(2,4), c(1,5)+cost(2,5)}
= min{9+7, 7+9, 3+18, 2+15}

16

1  2  7  10  12
1  3  6  10  12

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 8

Algorithm FGraph(G, k, n, p)

//p[1:k] is a minimum cost path

{

 cost[n] = 0.0;

 for j = n-1 to 1 step -1 do

 {

 Let r be a vertex such that j, r is an edge of G and c[j, r]+cost[r] is

minimum;

 cost[j] = c[j, r] + cost[r];

 d[j] = r;

 }

 p[1] = 1; p[k] = n;

 for j = 2 to k-1 do

 p[j] = d[p[j-1]];

}

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 9

Backward Approach

• In the backward approach, the cost of each and every node is found

starting from the 1st stage to the kth stage.

• The minimum cost path from the source to destination is found ie., stage

k to stage 1.

• For backward approach,

 bcost(i, j) = min{bcost(i-1, l) + c(l, j)}

 lVi-1

 l, jE

 where i is the level number.

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 10

V1 V2 V3 V4 V5

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 11

Min. Cost

bcost(1,1) 0 0

bcost(2,2) min{bcost(1,1)+c(1,2)} =min{0+9} 9

bcost(2,3) min{bcost(1,1)+c(1,3)} =min{0+7} 7

bcost(2,4) min{bcost(1,1)+c(1,4)} =min{0+3} 3

bcost(2,5) min{bcost(1,1)+c(1,5)} =min{0+2} 2

bcost(3,6) min{bcost(2,2)+c(2,6),bcost(2,3)+c(3,6)}
= min{9+4,7+2}

9

bcost(3,7) min{bcost(2,2)+c(2,7),bcost(2,3)+c(3,7),
 bcost(2,5)+c(5,7)}
= min{9+2,7+7,2+11}

11

bcost(i, j) = min{bcost(i-1, l) + c(l, j)}

 lVi-1

 l, jE

Dr. R. Bhuvaneswari

Min. Cost

bcost(3,8) min{bcost(2,2)+c(2,8),bcost(2,4)+c(4,8),
 bcost(2,5)+c(5,8)}
= min{9+1,3+11,2+8}

10

bcost(4,9) min{bcost(3,6)+c(6,9),Bcost(3,7)+c(7,9)}
= min{9+6,11+4}

15

bcost(4,10) min{bcost(3,6)+c(6,10),bcost(3,7)+c(7,10),
 bcost(3,8)+c(8,10)}
= min{9+5,11+3,10+5}

14

bcost(4,11) min{bcost(3,8)+c(8,11)} = min{10+6} 16

Bcost(5,12) min{bcost(4,9)+c(9,12),bcost(4,10)+c(10,12),
 bcost(4,11)+c(11,12)}
= min{15+4,14+2,16+5}

16

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 12

12  10  7  2  1 1 2  7  10  12
12  10  6  3  1 1 3  6  10  12

Dr. R. Bhuvaneswari

Multistage Graphs

Periyar Govt. Arts College

Cuddalore 13

Algorithm BGraph(G, k, n, p)

{

 bcost[1] = 0.0;

 for j = 2 to n do

 {

 Let r be such that r, j is an edge of G and bcost[r] + c[r, j] is minimum;

 bcost[j] = bcost[r] + c[r, j];

 d[j] = r;

 }

 p[1] = 1; p[k] = n;

 for j = k-1 to 2 step -1 do

 p[j] = d[p[j+1]];

}

Dr. R. Bhuvaneswari

All pair shortest paths

Periyar Govt. Arts College

Cuddalore 14

• All pairs shortest path problem is the determination of the shortest graph

distances between every pair of vertices in a given directed graph G.

• That is, for every pair of vertices (i, j), we are to find a shortest path from

i to j as well as from j to i. These two paths are the same when G is

undirected.

• Let G = (V, E) be a directed graph with n vertices.

• Let cost be a cost adjacency matrix for G such that cost(i, i) = 0, 1  i  n.

• Cost(i, j) is the length of edge i, j if i, j  E(G) and cost(i, j) =  if i  j

and i, j  E(G).

• All pair shortest path problem is to determine a matrix A such that A(i, j)

is the length of a shortest path from i to j.

• Since each application of this procedure requires O(n2) time, the matrix A

can be obtained in O(n3) time.

Dr. R. Bhuvaneswari

All pair shortest paths

Periyar Govt. Arts College

Cuddalore 15

• The shortest i to j path in G, i ≠ j originates at vertex i and goes through

some intermediate vertices and terminates at vertex j.

• If k is an intermediate vertex on this shortest path, then the subpaths from

i to k and from k to j must be shortest paths from i to k and k to j,

respectively.

• Otherwise, the i to j path is not of minimum length.

• So, the principle of optimality holds.

• Let Ak(i, j) represent the length of a shortest path from i to j going through

no vertex of index greater than k, we obtain:

• Time complexity of this algorithm is O(n3)

𝑨𝒌 𝒊, 𝒋 = 𝐦𝐢𝐧
𝟏 ≤𝒌 ≤𝒏

{𝑨𝒌−𝟏 𝒊, 𝒌 + 𝑨𝒌−𝟏 𝒌, 𝒋 , 𝒄𝒐𝒔𝒕 𝒊, 𝒋 }

Dr. R. Bhuvaneswari

All pair shortest paths

Periyar Govt. Arts College

Cuddalore 16

Algorithm AllPaths(cost, A, n)

{

 for i =1 to n do

 {

 for j = 1 to n do

 A[i, j] = cost[i, j];

 }

 for k = 1 to n do

 {

 for j = 1 to n do

 {

 for j = 1 to n do

 A[i, j] = min{A[i, j], A[i, k]+A[k, j]};

 }

 }

}

1 2

3

6

4

2
11

3

1->3 = 11
1->2->3 = 6
2->1 = 6
2->3->1 = 5

Dr. R. Bhuvaneswari

All pair shortest paths

Periyar Govt. Arts College

Cuddalore 17

A0 1 2 3

1 0 4 11

2 6 0 2

3 3  0

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 7 0

A2 1 2 3

1 0 4 6

2 6 0 2

3 3 7 0

A3 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

Solve the problem for k = 1, 2, 3

Cost adjacency matrix

Solving the

equation for, k = 1

Solving the

equation for, k = 2

Solving the

equation for, k = 3

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 18

• Given two strings X = x1, x2, …. , xn and Y = y1, y2, ….., yn, where xi,

1  i  n, and yj, 1  j  m, are members of a finite set of symbols known

as the alphabet.

• We want to transform X into Y using a sequence of edit operations on X.

• The permissible edit operations are insert, delete and change, and there is a

cost associated with each operation.

• The cost of a sequence of operations is the sum of the costs of the

individual operations in the sequence.

• The problem of string editing is to identify a minimum-cost sequence of

edit operations that will transform X into Y.

• D(xi) – cost of deleting the symbol xi from X

• I(yj) – the cost of inserting the symbol yj into X

• C(xi, yj) – cost of changing the symbol xi of X into yj

• Cost of changing any symbol to any other symbol is 2.

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 19

• Cost associated with each insertion and deletion is 1.

• A dynamic programming solution to this problem can be obtained as

follows.

• Define cost(i, j) be the minimum cost of any edit sequence for

transforming x1, x2, …, xi into y1, y2, …, yj

• Compute cost(i, j) for each i and j.

• Then cost(n, m) is the cost of an optimal edit sequence.

• For i = j = 0, cost(i, j) = 0, since the two sequences are identical and

empty.

• If j = 0 and i > 0, we can transform X into Y by a sequence of deletes.

 Cost(i, 0) = cost(i-1, 0) + D(xi).

• If i = 0 and j > 0, we can transform X into Y by a sequence of insertions

 Cost(0, j) = cost(0, j-1) + I(yj)

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 20

• If i  0 and j  0, x1, x2, …., xi can transformed into y1, y2, … yj in one of

the following ways:

 Transform x1, x2, …., xi-1 into y1, y2, …, yj using a minimum-cost edit

sequence and then delete xi. The cost is cost(i-1, j) + D(xi)

 Transform x1, x2, …., xi-1 into y1, y2, …, yj-1 using a minimum-cost edit

sequence and then change the symbol xi to yj. The cost is cost(i-1, j-1)

+ C(xi, yj)

 Transform x1, x2, …., xi into y1, y2, …, yj-1 using a minimum-cost edit

sequence and then insert yj. The cost is cost(i, j-1) + I(yj)

• The minimum cost of any edit sequence is the minimum of the above

three costs, according to the principle of optimality.

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 21

• The recurrence equation for cost(i, j) is

𝑐𝒐𝒔𝒕 𝒊, 𝒋 =

 𝟎 𝒊 = 𝒋 = 𝟎

𝒄𝒐𝒔𝒕 𝒊 − 𝟏, 𝟎 + 𝑫 𝒙𝒊 𝒋 = 𝟎, 𝒊 > 0

𝒄𝒐𝒔𝒕 𝟎, 𝒋 − 𝟏 + 𝑰 𝒚𝒋 𝒊 = 𝟎, 𝒋 > 0

𝒄𝒐𝒔𝒕′ 𝒊, 𝒋 𝒊 > 0, 𝒋 > 0

where
cost’ i, j = min{cost i-1, j) +D(xi), cost(i-1, j-1) + C(xi, yj),
 cost(i, j-1) + I(yj)}

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 22

Given two strings, X and Y and edit operations (given below). Convert

string X into Y with minimum number of operations.

Allowed Operations:

 Insertion – Insert a new character.

 Deletion – Delete a character.

 Replace – Replace one character by another.

Example 1:

String X = "horizon"

String Y = "horzon"

Output: {remove 'i' from string X}

Example 2:

String X = a, a, b, a, b

String Y = b, a, b, b

For the cases i = 0, j > 1, and j = 0, i > 1, cost(i, j) can be computed first

and tabulated in the form of a table. The rest of the entries in the table can

be computed in the row-major order.

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 23

Cost(1,1) = min{cost(0,1)+D(x1), cost(0,0) + C(x1,y1), cost(1,0)+I(y1)}

 = min{1+1, 0+2, 1+1} = 2

Cost(1,2) = min{cost(0,2)+D(x1), cost(0,1) + C(x1,y2), cost(1,1)+I(y2)}

 = min{2+1, 1+0, 2+1} = 1

Cost(1,3) = min{cost(0,3)+D(x1), cost(0,2) + C(x1,y3), cost(1,2)+I(y3)}

 = min{3+1, 2+2, 1+1} = 2

Cost(1,4) = min{cost(0,4)+D(x1), cost(0,3) + C(x1,y4), cost(1,3)+I(y4)}

 = min{4+1, 3+2, 2+1} = 3

Cost(2,1) = min{cost(1,1)+D(x2), cost(1,0) + C(x2,y1), cost(2,0)+I(y1)}

 = min{2+1, 1+2, 2+1} = 3

Cost(2,2) = min{cost(1,2)+D(x2), cost(1,1) + C(x2,y2), cost(2,1)+I(y2)}

 = min{1+1, 2+0, 3+1} = 2

Cost(2,3) = min{cost(1,3)+D(x2), cost(1,2) + C(x2,y3), cost(2,2)+I(y3)}

 = min{2+1, 1+2, 2+1} = 3

Cost(2,4) = min{cost(1,4)+D(x2), cost(1,3) + C(x2,y4), cost(2,3)+I(y4)}

 = min{3+1, 2+2, 3+1} = 4

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 24

Cost(3,1) = min{cost(2,1)+D(x3), cost(2,0) + C(x3,y1), cost(3,0)+I(y1)}

 = min{3+1, 2+0, 3+1} = 2

Cost(3,2) = min{cost(2,2)+D(x3), cost(2,1) + C(x3,y2), cost(3,1)+I(y2)}

 = min{2+1, 3+2, 2+1} = 3

Cost(3,3) = min{cost(2,3)+D(x3), cost(2,2) + C(x3,y3), cost(3,2)+I(y3)}

 = min{3+1, 2+0, 3+1} = 2

Cost(3,4) = min{cost(2,4)+D(x3), cost(2,3) + C(x3,y4), cost(3,3)+I(y4)}

 = min{4+1, 3+0, 2+1} = 3

Cost(4,1) = min{cost(3,1)+D(x4), cost(3,0) + C(x4,y1), cost(4,0)+I(y1)}

 = min{2+1, 3+2, 4+1} = 3

Cost(4,2) = min{cost(3,2)+D(x4), cost(3,1) + C(x4,y2), cost(4,1)+I(y2)}

 = min{3+1, 2+0, 3+1} = 2

Cost(4,3) = min{cost(3,3)+D(x4), cost(3,2) + C(x4,y3), cost(4,2)+I(y3)}

 = min{2+1, 3+2, 2+1} = 3

Cost(4,4) = min{cost(3,4)+D(x4), cost(3,3) + C(x4,y4), cost(4,3)+I(y4)}

 = min{3+1, 2+2, 3+1} = 4

Dr. R. Bhuvaneswari

String Editing

Periyar Govt. Arts College

Cuddalore 25

Cost(5,1) = min{cost(4,1)+D(x5), cost(4,0) + C(x5,y1), cost(5,0)+I(y1)}

 = min{3+1, 4+0, 5+1} = 4

Cost(5,2) = min{cost(4,2)+D(x5), cost(4,1) + C(x5,y2), cost(5,1)+I(y2)}

 = min{2+1, 3+2, 4+1} = 3

Cost(5,3) = min{cost(4,3)+D(x5), cost(4,2) + C(x5,y3), cost(5,2)+I(y3)}

 = min{3+1, 2+0, 3+1} = 2

Cost(5,4) = min{cost(4,4)+D(x5), cost(4,3) + C(x5,y4), cost(5,3)+I(y4)}

 = min{4+1, 3+0, 2+1} = 3

Optimal operations are:

 Insert y1, delete x2 and x4

 Change x1 by y1, delete x4

 Delete x1 and x2, insert y3

 Delete x1 and x2, insert y4

Time complexity: O(mn)

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 26

• Given n objects and a knapsack or bag.

• wi → weight of object i.

• m → knapsack capacity.

• As the name suggests, objects are indivisible in this method. No

fractional objects can be taken. An object can either be taken completely

or left completely.

• Objective is to fill the knapsack that maximizes the total profit earned.

• Problem can be stated as

maximize pi

1 ≤ i ≤n

xi

subject to wixi ≤ m

1≤ i ≤n

xi = 0 or 1, 1 ≤ i ≤ n

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 27

0/1 knapsack problem is solved using dynamic programming in the

following steps-

• Draw a table say ‘V’ with (n+1) number of rows and (w+1) number of

columns.

• Fill all the boxes of 0th row and 0th column with zeroes.

• Start filling the table row wise top to bottom from left to right.

• Use the following formula:

 V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]}

• value of the last box represents the maximum possible value that can be

put into the knapsack.

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 28

• To identify the items that must be put into the knapsack to obtain the

maximum profit,

 Consider the last column of the table.

 Start scanning the entries from bottom to top.

 On encountering an entry whose value is not same as the value

stored in the entry immediately above it, mark the row label of that

entry.

 After all the entries are scanned, the marked labels represent the

items that must be put into the knapsack.

• O(nw) time is taken to solve 0/1 knapsack problem using dynamic

programming.

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 29

Pi = {1, 2, 5, 6}

wi = (2, 3, 4, 5}

m = 8, n = 4

V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]}

V[1,1] = max{V[0,1], V[0,1-2]+1} = max{0, -} = 0

V[1,2] = max{V[0,2], V[0,2-2]+1} = max{0, 0+1} = 1

V[1,3] = max{V[0,3], V[0,3-2]+1} = max{0,0+1} = 1

V[1,4] = max{V[0,4], V[0,4-2]+1} = max{0, 0+1} = 1

V[1,5] = max{V[0,5], V[0,5-2]+1} = max{0, 0+1} = 1

V[1,6] = max{V[0,6], V[0,6-2]+1} = max{0, 0+1} = 1

V[1,7] = max{V[0,7], V[0,7-2]+1} = max{0, 0+1} = 1

V[1,8] = max{V[0,8], V[0,8-2]+1} = max{0, 0+1} = 1

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 30

V[2,1] = max{V[1,1],V[1,1-3]+2} = max{0, -} = 0

V[2,2] = max{V[1,2],V[1,2-3]+2} = max{1, -} = 1

V[2,3] = max{V[1,3],V[1,3-3]+2} = max{1, 0+2} = 2

V[2,4] = max{V[1,4],V[1,4-3]+2} = max{1, 0+2} = 2

V[2,5] = max{V[1,5],V[1,5-3]+2} = max{1, 1+2} = 3

V[2,6] = max{V[1,6],V[1,6-3]+2} = max{1, 1+2} = 3

V[2,7] = max{V[1,7],V[1,7-3]+2} = max{1, 1+2} = 3

V[2,8] = max{V[1,8],V[1,8-3]+2} = max{1, 1+2} = 3

V[3,1] = max{V[2,1],V[2,1-4]+5} = max{0, -} = 0

V[3,2] = max{V[2,2],V[2,2-4]+5} = max{1, -} = 1

V[3,3] = max{V[2,3],V[2,3-4]+5} = max{2, -} = 2

V[3,4] = max{V[2,4],V[2,4-4]+5} = max{2, 0+5} = 5

V[3,5] = max{V[2,5],V[2,5-4]+5} = max{2, 0+5} = 5

V[3,6] = max{V[2,6],V[2,6-4]+5} = max{2, 1+5} = 6

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 31

V[3,7] = max{V[2,7],V[2,7-4]+5} = max{2, 2+5} = 7

V[3,8] = max{V[2,8],V[2,8-4]+5} = max{2, 2+5} = 7

V[4,1] = max{V[3,1],V[3,1-5]+6} = max{0, -} = 0

V[4,2] = max{V[3,2],V[3,2-5]+6} = max{1, -} = 1

V[4,3] = max{V[3,3],V[3,3-5]+6} = max{2, -} = 2

V[4,4] = max{V[3,4],V[3,4-5]+6} = max{5, -} = 5

V[4,5] = max{V[3,5],V[3,5-5]+6} = max{5, 0+6} = 6

V[4,6] = max{V[3,6],V[3,6-5]+6} = max{6, 0+6} = 6

V[4,7] = max{V[3,7],V[3,7-5]+6} = max{7, 1+6} = 7

V[4,8] = max{V[3,8],V[3,8-5]+6} = max{7, 2+6} = 8

x1 = 0, x2 = 1, x3 = 0, x4 = 1

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

Periyar Govt. Arts College

Cuddalore 32

for (i = 0; i  n; i++)

{

 for(w = 0; w  m; w++)

 {

 if(i==0 || w==0)

 k[i][w] = 0;

 else if(wt[i]  w)

 k[i][w] = max(p[i]+k[i-1][w-wt[i], k[i-1][w]);

 else

 k[i][w] = k[i-1][w];

 }

}

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

Periyar Govt. Arts College

Cuddalore 33

• The traveling salesperson problem is to find a tour of minimum cost.

• Let G = (V, E) be a directed graph with edge cost Cij =  if i, j  E

• Let V = n and assume n > 1

• A tour G is a directed simple cycle that includes every vertex in V.

• The cost of a tour is the sum of the cost of the edges on the tour.

• Let g(i, S) be the length of a shortest path starting at vertex i, going

through all vertices in S and terminating at vertex 1.

• The function g(1, V-{1}) is the length of an optimal salesperson tour.

𝑔 1, 𝑉 − {1 = min
2 ≤𝑘 ≤𝑛

{𝑐1𝑘 + 𝑔 𝑘, 𝑉 − {1, 𝑘 − − − − − 1

𝑔 𝑖, 𝑆 = min
𝑗 ∈𝑆

 𝑐𝑖𝑗 + 𝑔 𝑗, 𝑆 − {𝑗 − − − − − 2

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

Periyar Govt. Arts College

Cuddalore 34

1 2 3 4
1 0 10 15 20
2 5 0 9 10
3 6 13 0 12
4 8 8 9 0

g(i,) = Ci1, 1  i  n.

S = 

g(2,) = c21 = 5

g(3,) = c31 = 6

g(4, ) = c41 = 8

Using equation 2, we obtain

S = 1

g(2,{3}) = c23 + g(3,) = 9+6 = 15

g(2,{4}) = c24 + g(4,) = 10+8 = 18

g(3,{2}) = c32 +g(2,) = 13+5 = 18

g(3,{4}) = c34+g(4,) = 12+8 = 20

g(4,{2}) = c42+g(2,) = 8+5 = 13

g(4,{3}) = c43+g(3,) = 9+6 = 15

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

Periyar Govt. Arts College

Cuddalore 35

S = 2

g(2,{3,4}) = min{c23 +g(3,{4}), c24 + g(4,{3})}

 = min{9+20, 10+15} = 25

g(3,{2,4}) = min{c32 + g(2,{4}), c34 + g(4,{2})}

 = min{13+18, 12+13} = 25

g(4,{2,3}) = min{c42 + g(2,{3}), c43 + g(3,{2})}

 = min{8+15, 9+18} = 23

Using equation 1, we obtain

g(1,{2,3,4}) = min{c12+g(2,{3,4}), c13+g(3,{2,4}), c14+g(4,{2,3})}

 = min{10+25, 15+25, 20+23} = 35

 The optimal tour is

 1->2->4->3->1

O(2nn2) time is taken to solve the traveling salesperson problem

