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Dynamic Programming 

General Method: 

• It is an algorithm design method that can be used when the solution to a 

problem can be viewed as a sequence of decisions. 

• It obtains the solution using “Principle of Optimality”. 

• It states that “ In an optimal sequence of decisions or choices, each 

subsequence must also be optimal”, ie., whatever the initial state and 

decision are, the remaining decisions must constitute an optimal 

decision sequence. 

• The difference between the greedy method and dynamic programming 

is that in the greedy method only one decision sequence is ever 

generated. 

• In dynamic programming, many decision sequences may be generated. 

• Sequences containing suboptimal subsequences cannot be optimal and 

so will not be generated. 
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• A multistage graph G = (V, E) is a directed graph in which the vertices 

are partitioned into k  2 disjoint sets Vi, 1  i  k. 

• If u, v is an edge in E, then u  Vi and v  Vi+1. 

• The sets V1 and Vk are such that |V1| = |Vk| = 1. 

• The vertex s is the source and the t the sink (destination). 

• The multistage graph problem is to find a minimum cost path from s to t. 

• The cost of s to t is the sum of the cost of the edges on the path. 

• The multistage graph problem can be solved in 2 ways. 

Forward method 

Backward method 
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Forward Approach 

• In the forward approach, the cost of each and every node is found 

starting from the k stage to the 1st stage. 

• The minimum cost path from the source to destination is found ie., 

stage 1 to stage k. 

• For forward approach, 

  Cost(i ,j) = min{c(j, l) + cost(i+1, l)} 

                   lVi+1 

                   j, lE 

 where i is the level number. 
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V1       V2              V3          V4                       V5 
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Min. Cost 

cost(5,12) 0 0 

cost(4,9) min{c(9,12)+cost(5,12)} = {4 + 0} 4 

cost(4,10) min{c(10,12)+cost(5,12)} = {2 + 0} 2 

cost(4,11) min{c(11,12)+cost(5,12)} = {5+ 0} 5 

cost(3,6) min{c(6,9)+cost(4,9), c(6,10)+cost(4,10)}  
=  min{6+ 4, 5+2} 

7 

cost(3,7) min{c(7,9)+cost(4,9), c(7,10)+cost(4,10)} 
= min{4+4, 3+2} 

5 

cost(3,8) min{c(8,10)+cost(4,10), c(8,11)+cost(4,11)} 
= min{5+2, 6+5} 

7 

Cost(i ,j) = min{c(j, l) + cost(i+1, l)} 

                   lVi+1 

      j, lE 
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Min. Cost 

cost(2,2) min{c(2,6)+cost(3,6), c(2,7)+cost(3,7), 
         c(2,8)+cost(3,8)}  
= min{4+7, 2+5, 1+7} 

7 

cost(2,3) min{c(3,6)+cost(3,6), c(3,7)+cost(3,7)}  
= min{2+7, 7+5} 

9 

cost(2,4) min{c(4,8)+cost(3,8)}  
= min{11+7} 

18 

cost(2,5) min{c(5,7)+cost(3,7), c(5,8)+cost(3,8)}  
=  min{11+5, 8+7} 

15 

cost(1,1) min{c(1,2)+cost(2,2), c(1,3)+cost(2,3), 
        c(1,4)+cost(2,4), c(1,5)+cost(2,5)}  
= min{9+7, 7+9, 3+18, 2+15} 

16 

1  2  7  10  12 
1  3  6  10  12 
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Algorithm FGraph(G, k, n, p) 

//p[1:k] is a minimum cost path 

{ 

   cost[n] = 0.0; 

   for j = n-1 to 1 step -1 do 

  { 

     Let r be a vertex such that j, r is an edge of G and c[j, r]+cost[r] is   

minimum; 

    cost[j] = c[j, r] + cost[r]; 

    d[j] = r; 

  } 

  p[1] = 1; p[k] = n; 

  for j = 2 to k-1 do 

  p[j] = d[p[j-1]]; 

} 
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Backward Approach 

• In the backward approach, the cost of each and every node is found 

starting from the 1st stage to the kth stage. 

• The minimum cost path from the source to destination is found ie., stage 

k to stage 1. 

• For backward approach, 

  bcost(i, j) = min{bcost(i-1, l) + c(l, j)} 

                     lVi-1 

                     l, jE 

 where i is the level number. 
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V1       V2              V3          V4                       V5 
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Min. Cost 

bcost(1,1)  0 0 

bcost(2,2) min{bcost(1,1)+c(1,2)} =min{0+9} 9 

bcost(2,3) min{bcost(1,1)+c(1,3)} =min{0+7} 7 

bcost(2,4) min{bcost(1,1)+c(1,4)} =min{0+3} 3 

bcost(2,5) min{bcost(1,1)+c(1,5)} =min{0+2} 2 

bcost(3,6) min{bcost(2,2)+c(2,6),bcost(2,3)+c(3,6)} 
= min{9+4,7+2} 

9 

bcost(3,7) min{bcost(2,2)+c(2,7),bcost(2,3)+c(3,7), 
         bcost(2,5)+c(5,7)} 
= min{9+2,7+7,2+11} 

11 

bcost(i, j) = min{bcost(i-1, l) + c(l, j)} 

                     lVi-1 

        l, jE 
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Min. Cost 

bcost(3,8)  min{bcost(2,2)+c(2,8),bcost(2,4)+c(4,8), 
         bcost(2,5)+c(5,8)} 
= min{9+1,3+11,2+8} 

10 

bcost(4,9) min{bcost(3,6)+c(6,9),Bcost(3,7)+c(7,9)} 
= min{9+6,11+4} 

15 

bcost(4,10) min{bcost(3,6)+c(6,10),bcost(3,7)+c(7,10), 
         bcost(3,8)+c(8,10)} 
= min{9+5,11+3,10+5} 

14 

bcost(4,11) min{bcost(3,8)+c(8,11)} = min{10+6} 16 

Bcost(5,12) min{bcost(4,9)+c(9,12),bcost(4,10)+c(10,12), 
        bcost(4,11)+c(11,12)} 
= min{15+4,14+2,16+5} 

16 
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12  10  7  2  1           1 2  7  10  12 
12  10  6  3  1           1 3  6  10  12 
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Algorithm BGraph(G, k, n, p) 

{ 

   bcost[1] = 0.0; 

   for j = 2 to n do 

   { 

      Let r be such that r, j is an edge of G and bcost[r] + c[r, j] is minimum; 

      bcost[j] = bcost[r] + c[r, j]; 

      d[j] = r; 

   } 

   p[1] = 1; p[k] = n; 

   for j = k-1 to 2 step -1 do 

 p[j] = d[p[j+1]]; 

} 
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• All pairs shortest path problem is the determination of the shortest graph 

distances between every pair of vertices in a given directed graph G. 

• That is, for every pair of vertices (i, j), we are to find a shortest path from 

i to j as well as from j to i. These two paths are the same when G is 

undirected.  

• Let G = (V, E) be a directed graph with n vertices. 

• Let cost be a cost adjacency matrix for G such that cost(i, i) = 0, 1  i  n. 

• Cost(i, j) is the length of edge i, j if i, j  E(G) and cost(i, j) =  if i  j 

and i, j  E(G). 

• All pair shortest path problem is to determine a matrix A such that A(i, j) 

is the length of a shortest path from i to j. 

• Since each application of this procedure requires O(n2) time, the matrix A 

can be obtained in O(n3) time.  
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• The shortest i to j path in G, i ≠ j originates at vertex i and goes through 

some intermediate vertices and terminates at vertex j.  

• If k is an intermediate vertex on this shortest path, then the subpaths from 

i to k and from k to j must be shortest paths from i to k and k to j, 

respectively.  

• Otherwise, the i to j path is not of minimum length.  

• So, the principle of optimality holds.  

• Let Ak(i, j) represent the length of a shortest path from i to j going through 

no vertex of index greater than k, we obtain:  

 

 

• Time complexity of this algorithm is O(n3) 

𝑨𝒌 𝒊, 𝒋 =  𝐦𝐢𝐧
𝟏 ≤𝒌 ≤𝒏

{𝑨𝒌−𝟏 𝒊, 𝒌 + 𝑨𝒌−𝟏 𝒌, 𝒋 , 𝒄𝒐𝒔𝒕 𝒊, 𝒋 } 
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Algorithm AllPaths(cost, A, n) 

{ 

    for i =1 to n do 

    { 

      for j = 1 to n do 

 A[i, j] = cost[i, j]; 

    }     

    for k = 1 to n do 

    {     

      for j = 1 to n do 

      { 

        for j = 1 to n do 

 A[i, j] = min{A[i, j], A[i, k]+A[k, j]}; 

      } 

    } 

} 

1 2 

3 

6 

4 

2 
11 

3 

1->3 = 11 
1->2->3 = 6 
2->1 = 6 
2->3->1 = 5 
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A0 1 2 3 

1 0 4 11 

2 6 0 2 

3 3  0 

A1 1 2 3 

1 0 4 11 

2 6 0 2 

3 3 7 0 

A2 1 2 3 

1 0 4 6 

2 6 0 2 

3 3 7 0 

A3 1 2 3 

1 0 4 6 

2 5 0 2 

3 3 7 0 

Solve the problem for k = 1, 2, 3 

 

Cost adjacency matrix 

Solving the 

equation for, k = 1 

Solving the 

equation for, k = 2 

Solving the 

equation for, k = 3 
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• Given two strings X = x1, x2, …. , xn and Y = y1, y2, ….., yn, where xi,           

1  i  n, and yj, 1  j  m, are members of a finite set of symbols known 

as the alphabet. 

• We want to transform X into Y using a sequence of edit operations on X. 

• The permissible edit operations are insert, delete and change, and there is a 

cost associated with each operation. 

• The cost of a sequence of operations is the sum of the costs of the 

individual operations in the sequence. 

• The problem of string editing is to identify a minimum-cost sequence of 

edit operations that will transform X into Y. 

• D(xi) – cost of deleting the symbol xi from X 

• I(yj) – the cost of inserting the symbol yj into X 

• C(xi, yj) – cost of changing the symbol xi of X into yj 

• Cost of changing any symbol to any other symbol is 2. 
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• Cost associated with each insertion and deletion is 1. 

• A dynamic programming solution to this problem can be obtained as 

follows. 

• Define cost(i, j) be the minimum cost of any edit sequence for 

transforming x1, x2, …, xi into y1, y2, …, yj 

• Compute cost(i, j) for each i and j. 

• Then cost(n, m) is the cost of an optimal edit sequence. 

• For i = j = 0, cost(i, j) = 0, since the two sequences are identical and 

empty. 

• If j = 0 and i > 0, we can transform X into Y by a sequence of deletes. 

 Cost(i, 0) = cost(i-1, 0) + D(xi). 

• If i = 0 and j > 0, we can transform X into Y by a sequence of insertions 

 Cost(0, j) = cost(0, j-1) + I(yj) 
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• If i  0 and j  0, x1, x2, …., xi can transformed into y1, y2, … yj in one of 

the following ways: 

 Transform x1, x2, …., xi-1 into y1, y2, …, yj using a minimum-cost edit 

sequence and then delete xi. The cost is cost(i-1, j) + D(xi) 

 Transform x1, x2, …., xi-1 into y1, y2, …, yj-1 using a minimum-cost edit 

sequence and then change the symbol  xi to yj. The cost is cost(i-1, j-1) 

+ C(xi, yj) 

 Transform x1, x2, …., xi into y1, y2, …, yj-1 using a minimum-cost edit 

sequence and then insert yj. The cost is cost(i, j-1) + I(yj) 

• The minimum cost of any edit sequence is the minimum of the above 

three costs, according to the principle of optimality. 
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• The recurrence equation for cost(i, j) is 

 

𝑐𝒐𝒔𝒕 𝒊, 𝒋 =  

 
 
 

 
 𝟎                                              𝒊 = 𝒋 = 𝟎

𝒄𝒐𝒔𝒕 𝒊 − 𝟏, 𝟎 +  𝑫 𝒙𝒊         𝒋 = 𝟎, 𝒊 > 0

𝒄𝒐𝒔𝒕 𝟎, 𝒋 − 𝟏 +  𝑰 𝒚𝒋         𝒊 = 𝟎, 𝒋 > 0

𝒄𝒐𝒔𝒕′ 𝒊, 𝒋                                𝒊 > 0, 𝒋 > 0

  

 

where  
cost’ i, j  = min{cost i-1, j) +D(xi), cost(i-1, j-1) + C(xi, yj),  
                               cost(i, j-1) + I(yj)} 
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Given two strings, X and Y and edit operations (given below). Convert 

string X into Y with minimum number of operations. 

Allowed Operations: 

 Insertion – Insert a new character. 

 Deletion – Delete a character. 

 Replace – Replace one character by another. 

Example 1: 

String X = "horizon"  

String Y = "horzon"  

Output: {remove 'i' from string X} 

Example 2: 

String X = a, a, b, a, b 

String Y = b, a, b, b 

For the cases i = 0, j > 1, and j = 0, i > 1, cost(i, j) can be computed first 

and tabulated in the form of a table. The rest of the entries in the table can 

be computed in the row-major order. 
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Cost(1,1) = min{cost(0,1)+D(x1), cost(0,0) + C(x1,y1), cost(1,0)+I(y1)} 

                = min{1+1, 0+2, 1+1} = 2  

Cost(1,2) = min{cost(0,2)+D(x1), cost(0,1) + C(x1,y2), cost(1,1)+I(y2)} 

                = min{2+1, 1+0, 2+1} = 1 

Cost(1,3) = min{cost(0,3)+D(x1), cost(0,2) + C(x1,y3), cost(1,2)+I(y3)} 

                = min{3+1, 2+2, 1+1} = 2 

Cost(1,4) = min{cost(0,4)+D(x1), cost(0,3) + C(x1,y4), cost(1,3)+I(y4)} 

                = min{4+1, 3+2, 2+1} = 3 

Cost(2,1) = min{cost(1,1)+D(x2), cost(1,0) + C(x2,y1), cost(2,0)+I(y1)} 

                = min{2+1, 1+2, 2+1} = 3 

Cost(2,2) = min{cost(1,2)+D(x2), cost(1,1) + C(x2,y2), cost(2,1)+I(y2)} 

                = min{1+1, 2+0, 3+1} = 2 

Cost(2,3) = min{cost(1,3)+D(x2), cost(1,2) + C(x2,y3), cost(2,2)+I(y3)} 

                = min{2+1, 1+2, 2+1} = 3 

Cost(2,4) = min{cost(1,4)+D(x2), cost(1,3) + C(x2,y4), cost(2,3)+I(y4)} 

                = min{3+1, 2+2, 3+1} = 4 
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Cost(3,1) = min{cost(2,1)+D(x3), cost(2,0) + C(x3,y1), cost(3,0)+I(y1)} 

                = min{3+1, 2+0, 3+1} = 2 

Cost(3,2) = min{cost(2,2)+D(x3), cost(2,1) + C(x3,y2), cost(3,1)+I(y2)} 

                = min{2+1, 3+2, 2+1} = 3 

Cost(3,3) = min{cost(2,3)+D(x3), cost(2,2) + C(x3,y3), cost(3,2)+I(y3)} 

                = min{3+1, 2+0, 3+1} = 2 

Cost(3,4) = min{cost(2,4)+D(x3), cost(2,3) + C(x3,y4), cost(3,3)+I(y4)} 

                = min{4+1, 3+0, 2+1} = 3 

Cost(4,1) = min{cost(3,1)+D(x4), cost(3,0) + C(x4,y1), cost(4,0)+I(y1)} 

                = min{2+1, 3+2, 4+1} = 3 

Cost(4,2) = min{cost(3,2)+D(x4), cost(3,1) + C(x4,y2), cost(4,1)+I(y2)} 

                = min{3+1, 2+0, 3+1} = 2 

Cost(4,3) = min{cost(3,3)+D(x4), cost(3,2) + C(x4,y3), cost(4,2)+I(y3)} 

                = min{2+1, 3+2, 2+1} = 3 

Cost(4,4) = min{cost(3,4)+D(x4), cost(3,3) + C(x4,y4), cost(4,3)+I(y4)} 

                = min{3+1, 2+2, 3+1} = 4 
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Cost(5,1) = min{cost(4,1)+D(x5), cost(4,0) + C(x5,y1), cost(5,0)+I(y1)} 

                = min{3+1, 4+0, 5+1} = 4 

Cost(5,2) = min{cost(4,2)+D(x5), cost(4,1) + C(x5,y2), cost(5,1)+I(y2)} 

                = min{2+1, 3+2, 4+1} = 3 

Cost(5,3) = min{cost(4,3)+D(x5), cost(4,2) + C(x5,y3), cost(5,2)+I(y3)} 

                = min{3+1, 2+0, 3+1} = 2 

Cost(5,4) = min{cost(4,4)+D(x5), cost(4,3) + C(x5,y4), cost(5,3)+I(y4)} 

                = min{4+1, 3+0, 2+1} = 3 

Optimal operations are: 

 Insert y1, delete x2 and x4 

 Change x1 by y1, delete x4 

 Delete x1 and x2, insert y3 

 Delete x1 and x2, insert y4 

Time complexity: O(mn) 
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• Given n objects and a knapsack or bag. 

• wi → weight of object i. 

• m → knapsack capacity. 

• As the name suggests, objects are indivisible in this method. No 

fractional objects can be taken.  An object can either be taken completely 

or left completely. 

• Objective is to fill the knapsack that maximizes the total profit earned. 

• Problem can be stated as 

 

 

 

 

 

 
 

maximize  pi

1 ≤ i ≤n

xi        

subject to  wixi  ≤ m  

1≤ i ≤n

  

xi = 0 or 1, 1 ≤ i ≤ n   
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0/1 knapsack problem is solved using dynamic programming in the 

following steps- 

• Draw a table say ‘V’ with (n+1) number of rows and (w+1) number of 

columns. 

• Fill all the boxes of 0th row and 0th column with zeroes. 

• Start filling the table row wise top to bottom from left to right. 

• Use the following formula: 

  V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]} 

• value of the last box represents the maximum possible value that can be 

put into the knapsack. 
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• To identify the items that must be put into the knapsack to obtain the 

maximum profit, 

 Consider the last column of the table. 

 Start scanning the entries from bottom to top. 

 On encountering an entry whose value is not same as the value 

stored in the entry immediately above it, mark the row label of that 

entry. 

 After all the entries are scanned, the marked labels represent the 

items that must be put into the knapsack. 

• O(nw) time is taken to solve 0/1 knapsack problem using dynamic 

programming. 
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Pi = {1, 2, 5, 6} 

wi = (2, 3, 4, 5} 

m = 8, n = 4 

 

 

V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]} 

V[1,1] = max{V[0,1], V[0,1-2]+1} = max{0, -} = 0 

V[1,2] = max{V[0,2], V[0,2-2]+1} = max{0, 0+1} = 1 

V[1,3] = max{V[0,3], V[0,3-2]+1} = max{0,0+1} = 1 

V[1,4] = max{V[0,4], V[0,4-2]+1} = max{0, 0+1} = 1 

V[1,5] = max{V[0,5], V[0,5-2]+1} = max{0, 0+1} = 1 

V[1,6] = max{V[0,6], V[0,6-2]+1} = max{0, 0+1} = 1 

V[1,7] = max{V[0,7], V[0,7-2]+1} = max{0, 0+1} = 1 

V[1,8] = max{V[0,8], V[0,8-2]+1} = max{0, 0+1} = 1 
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V[2,1] = max{V[1,1],V[1,1-3]+2} =  max{0, -} = 0 

V[2,2] = max{V[1,2],V[1,2-3]+2} = max{1, -} = 1 

V[2,3] = max{V[1,3],V[1,3-3]+2} = max{1, 0+2} = 2 

V[2,4] = max{V[1,4],V[1,4-3]+2} = max{1, 0+2} = 2 

V[2,5] = max{V[1,5],V[1,5-3]+2} = max{1, 1+2} = 3 

V[2,6] = max{V[1,6],V[1,6-3]+2} = max{1, 1+2} = 3 

V[2,7] = max{V[1,7],V[1,7-3]+2} = max{1, 1+2} = 3 

V[2,8] = max{V[1,8],V[1,8-3]+2} = max{1, 1+2} = 3 

 

V[3,1] = max{V[2,1],V[2,1-4]+5} = max{0, -} = 0 

V[3,2] = max{V[2,2],V[2,2-4]+5} = max{1, -} = 1 

V[3,3] = max{V[2,3],V[2,3-4]+5} = max{2, -} = 2 

V[3,4] = max{V[2,4],V[2,4-4]+5} = max{2, 0+5} = 5 

V[3,5] = max{V[2,5],V[2,5-4]+5} = max{2, 0+5} = 5 

V[3,6] = max{V[2,6],V[2,6-4]+5} = max{2, 1+5} = 6 
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V[3,7] = max{V[2,7],V[2,7-4]+5} = max{2, 2+5} = 7 

V[3,8] = max{V[2,8],V[2,8-4]+5} = max{2, 2+5} = 7 

 

V[4,1] = max{V[3,1],V[3,1-5]+6} = max{0, -} = 0 

V[4,2] = max{V[3,2],V[3,2-5]+6} = max{1, -} = 1 

V[4,3] = max{V[3,3],V[3,3-5]+6} = max{2, -} = 2 

V[4,4] = max{V[3,4],V[3,4-5]+6} = max{5, -} = 5 

V[4,5] = max{V[3,5],V[3,5-5]+6} = max{5, 0+6} = 6 

V[4,6] = max{V[3,6],V[3,6-5]+6} = max{6, 0+6} = 6 

V[4,7] = max{V[3,7],V[3,7-5]+6} = max{7, 1+6} = 7 

V[4,8] = max{V[3,8],V[3,8-5]+6} = max{7, 2+6} = 8 

 

x1 = 0, x2 = 1, x3 = 0, x4 = 1 
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for (i = 0; i  n; i++) 

{ 

   for(w = 0; w  m; w++) 

   { 

      if(i==0 || w==0) 

 k[i][w] = 0; 

      else if(wt[i]  w) 

 k[i][w] = max(p[i]+k[i-1][w-wt[i], k[i-1][w]); 

      else 

 k[i][w] = k[i-1][w]; 

   } 

} 
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• The traveling salesperson problem is to find a tour of minimum cost. 

• Let G = (V, E) be a directed graph with edge cost Cij =  if i, j  E 

• Let V = n and assume n > 1 

• A tour G is a directed simple cycle that includes every vertex in V. 

• The cost of a tour is the sum of the cost of the edges on the tour. 

• Let g(i, S) be the length of a shortest path starting at vertex i, going 

through all vertices in S and terminating at vertex 1. 

• The function g(1, V-{1}) is the length of an optimal salesperson tour. 

𝑔 1, 𝑉 − {1  = min
2 ≤𝑘 ≤𝑛

{𝑐1𝑘 +  𝑔 𝑘, 𝑉 − {1, 𝑘   − − − − − 1 

𝑔 𝑖, 𝑆 =  min
𝑗  ∈𝑆

 𝑐𝑖𝑗 +  𝑔 𝑗, 𝑆 − {𝑗   − − − − − 2 
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1 2 3 4 
1 0 10 15 20 
2 5 0 9 10 
3 6 13 0 12 
4 8 8 9 0 

g(i,) = Ci1, 1  i  n.  

  

S =  

g(2,) = c21 = 5 

g(3,) = c31 = 6 

g(4, ) = c41 = 8 

 

Using equation 2, we obtain 

S = 1 

g(2,{3}) = c23 + g(3,) = 9+6 = 15 

g(2,{4}) = c24 + g(4,) = 10+8 = 18 

g(3,{2}) = c32 +g(2,) = 13+5 = 18 

g(3,{4}) = c34+g(4,) = 12+8 = 20 

g(4,{2}) = c42+g(2,) = 8+5 = 13 

g(4,{3}) = c43+g(3,) = 9+6 = 15 
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S = 2 

g(2,{3,4}) = min{c23 +g(3,{4}), c24 + g(4,{3})} 

                 = min{9+20, 10+15} = 25 

g(3,{2,4}) = min{c32 + g(2,{4}), c34 + g(4,{2})} 

                 = min{13+18, 12+13} = 25 

g(4,{2,3}) = min{c42 + g(2,{3}), c43 + g(3,{2})} 

                 = min{8+15, 9+18} = 23 

Using equation 1, we obtain 

g(1,{2,3,4}) = min{c12+g(2,{3,4}), c13+g(3,{2,4}), c14+g(4,{2,3})} 

                    = min{10+25, 15+25, 20+23} = 35 

 The optimal tour is  

 1->2->4->3->1 

 

O(2nn2) time is taken to solve the traveling salesperson problem 
 


