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• A tree whose nodes have at most 2 children is called a binary tree. 

• A traversal is a process that visits all the nodes in the tree.  

• Since a tree is a nonlinear data structure, there is no unique traversal.  

• We consider several traversal algorithms which we group in the 

following two kinds 

 depth-first traversal 

 breadth-first traversal 

• There are three different types of depth-first traversals: 

 In-order Traversal 

 Pre-order Traversal 

 Post-order Traversal 

• Generally, we traverse a tree to search or locate a given item or key in the 

tree or to print all the values it contains. 
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• In this traversal method, the left subtree is visited first, then the root and 

later the right sub-tree. We should always remember that every node may 

represent a subtree itself. 

• If a binary tree is traversed in-order, the output will produce sorted key 

values in an ascending order. 

• To traverse a non-empty binary tree in in-order, we perform the following 

three operations: 

1. traverse the left sub-tree in in-order. 

2. visit the root. 

3. traverse the right sub-tree in in-order. 

• A node of a binary tree is defined as 

 struct node 

 { 

       char data; 

       struct node *lchild, *rchild; 

 }; 

4 
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Algorithm Inorder(t) 

{ 

   if t  0 then 

  { 

     Inorder(tlchild); 

     visit(t); 

     Inorder(trchild); 

  } 

} 

5 
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• To traverse a non-empty binary tree in pre-order, we perform 

the following three operations: 

1. visit the root. 

2. traverse the left sub-tree in pre-order. 

3. traverse the right sub-tree in pre-order. 

 

Algorithm Preorder(t) 

{ 

   if t  0 then 

  { 

     visit(t); 

     Preorder(tlchild); 

     Preorder(trchild); 

  } 

} 
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• To traverse a non-empty binary tree in post-order, we perform the 

following three operations: 

1. traverse the left sub-tree in post-order. 

2. traverse the right sub-tree in post-order. 

3. visit the root. 

 

Algorithm Postorder(t) 

{ 

   if t  0 then 

  { 

     Postorder(tlchild); 

     Postorder(trchild); 

     visit(t); 

  } 

} 
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• The graph is a non-linear data structure. It consists of some nodes and their 

connected edges. The edges may be directed or undirected.  

• A Graph G is a pair (V, E), where V is a finite set of elements called vertices 

or nodes and E is a set of pairs of elements of V called edges or arcs. 

• A graph in which every edge is directed is called directed graph or 

digraph.  

• A graph in which edges are undirected are called undirected graph. 

• A graph which contains parallel edges is called multi-graph.  

• A graph which does not contain parallel edges are called simple graph.  

• Graph traversal is the problem of visiting all the nodes in a graph in a 

particular manner, updating and/or checking their values along the way.  

• The graph has two types of traversal algorithms. 

 Depth First Search or Traversal 

 Breadth First Search or Traversal 
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DFS follows the following rules: 

1. Select an unvisited node s, visit it, and treat it as the current node. 

2. Find an unvisited neighbor of the current node, visit it, and make it the 

current new node. 

3. If the current node has no unvisited neighbors, backtrack to its parent 

and make that the new current node. 

 Repeat the steps 2 and 3 until no more nodes can be visited.  

4. If there are still unvisited nodes, repeat from step 1.  
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DFS(v) 

{ 

    visited[v] = 1; 

    for each vertex w adjacent from v do 

    { 

         if (visited[w] = 0) then DFS(w); 

    } 

} 

1, 2, 4, 8, 5, 6, 3, 7 
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• The Breadth First Search (BFS) traversal is an algorithm, which is used to 

visit all of the nodes of a given graph.  

• In this traversal algorithm one node is selected and then all of the adjacent 

nodes are visited one by one.  

• After completing all of the adjacent vertices, it moves further to check 

another vertices and checks its adjacent vertices again. 

• This method can be implemented using a queue. 

• A Boolean array is used to ensure that a vertex is visited only once. 

 Add the starting vertex to the queue. 

 Repeat the following until the queue is empty. 

 Remove the vertex at the front of the queue, call it v. 

 Visit v. 

 Add the vertices adjust to v to the queue, that were never visited. 
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BFS(v) 
// q is a queue of unexplored vertices 
{ 
    u = v;   
    visited[v] = 1; 
    repeat 
    { 
        for all vertices w adjacent from u do 
       { 
           if(visited[w] = 0) then 
          { 
 add w to q; 
 visited[w] = 1; 
          } 
       } 
       if q is empty then return; 
       delete u from q; 
    } until(false); 
} 
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BFT(G, n) 

{ 

    for i = 1 to n do 

        visited[i] = 0; 

    for i = 1 to n do 

       if(visited[i] = 0) then BFS(i) 

} 

1, 2, 3, 4, 5, 6, 7, 8 
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• Backtracking is technique used to solve problems with a large search 

space, by systematically trying and eliminating  possibilities. 

• The desired solution is expressed as an n-tuple (x1, …, xn), where xi are 

chosen from some finite set Si. 

• The problem to be solved finds a vector that maximizes (or minimizes) a 

criterion function P(x1, …, xn).  

• Suppose mi is the size of  set Si. Then there are m = m1, m2, …., mn n-

tuples are possible candidates for satisfying the function P. 

• If it is realized that the partial vector (x1, x2, …, xn) can in no way lead to 

an optimal solution, then mi+1, …, mn possible test vectors can be ignored 

entirely. 

• Problems solved through backtracking requires that all the solutions satisfy 

a complex set of constraints. 

• Constraints are divided into two categories: 

 Implicit constraints 

 Explicit constrains 
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Explicit constraints are rules 

that restrict each xi to take on 

values only from a given set.  

Implicit constraints are rules 

that determine which of the 

tuples in the solution space of  

I satisfy the criterion function. 

Eg. 4-queens problem 

Explicit constraints – each 

queen on different row. 

Implicit constraints – all 

queens must be on different 

columns and no two queens 

can be on the same diagonal. 

Tree organization of 4-queens solution space 
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• Tuples that satisfy the explicit constraints define a solution space.  

• The solution space can be organized into a tree.  

• All paths from the root to other nodes define the state-space of the 

problem. 

• Live node is a node which has been generated and all of whose children 

are not yet been generated . 

• E-Node (Node being expanded) is the live node whose children are 

currently being generated . 

• Dead node is a node that is either not to be expanded further, or for 

which all of its children have been generated. 

• Bounding function will be used to kill live nodes without generating 

all their children. 
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Algorithm IBacktrack(n) 
{ 
  k=1; 
  while(k0) do 
  { 
    if(there remains an untired  
        x[k]  T(x[1], x[2], …, x[k-1]) and  
        Bk(x[1], …, x[k] is true) then 
    { 
       if(x[1] … x[k] is a path to an  
                              answer node) then 
  write (x[1:k]); 
          k=k+1; 
     } 
     else 
      k=k-1; 
  } 
} 

Algorithm Backtrack(k) 

{ 

  for(each x[k]  T(x[1], x[2], …, 

x[k-1]) do 

 { 

   if (Bk(x[1], …, x[k]  0) then 

  { 

    if (x[1], x[2], …, x[k]) is a path to 

an answer node) then 

           write(x[1:k]); 

    if(k<n) then Backtrack(k+1); 

   } 

 } 

} 
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• n – queens are placed on a n x n chess board, which means that the 

chessboard has n rows and n columns and the n queens are placed on n x n 

chessboard such that no two queens are placed in the same row or in the 

same column or in same diagonal.  

• All solutions to the n – queen’s problem can be represented as n–tuples 

(x1, x2... xn) where xi is the column of the ith  row where ith queen is  placed. 

• xi’s will all be distinct since no two queens can be placed in the same 

column. 

• Consider queen at [4,2]. Diagonal to this queen are a[3,1] 

•  2 queens are placed at positions (i, j) and (k, l).  

• They are on the same diagonal only if   

  i-j = k-l   e.g. 1-1 = 2-2  

  or i+j = k+l   e.g 1+4= 2+3 

   i-k = j-l 

• Therefore 2 queens lie on the same diagonal if and only if j-l = i-k 

1, 1 1, 2 1, 3 1, 4 

2, 1 2, 2 2, 3 2, 4 

3, 1 3, 2 3, 3 3, 4 

4, 1 4, 2 4, 3 4, 4 
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Algorithm Place(k,i) 

// Returns true if a queen can be placed in 

//kth row and ith column.  Otherwise it 

//returns false. X[] is a global array whose 

//first (k-1) values have been set. Abs(r) 

//returns the absolute value of n. 

{ 

  for j = 1 to k-1 do 

 { 

   if((x[j] = i)) or (abs(x[j]-i) = abs(j-k))) then 

 return false; 

  } 

  return true; 

} 

Algorithm NQueens(k, n) 

{ 

  for i = 1 to n do 

  { 

    if Place(k,i) then 

   { 

       x[k] = i; 

       if (k=n) then 

            write(x[1:n]); 

       else 

             NQueens(k+1,n); 

    } 

  } 

} 
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• Sum of Subsets problem is to find subset of elements that are selected 

from a given set whose sum adds up to a given number m.  

• We are considering the set contains non-negative values. It is assumed that 

the input set is unique (no duplicates are presented). 

• Here backtracking approach is used for trying to select a valid subset. 

• When an item is not valid, backtracking is done to get the previous subset 

and add another element to get the solution. 

Finding all subsets of wi, whose sum is m. 

Ex. 1: 

n = 4, (w1, w2, w3, w4) = (11,13,24,7), m = 31 

Possible subsets are {11, 13, 7} and {24, 7} 

Ex. 2: 

n = 7, w = {5, 10, 12, 13, 15, 18}, m = 30 

Possible subsets are {5, 10, 15}, {5, 12, 13} and {12, 18} 
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The bounding functions used are 

 

 

 

 

 

Example:  

n = 3, m = 6, w = {2, 4, 6} 

 

The full space tree for n = 3 

contains 23 – 1 = 7 nodes  

from which call could be  

made (this excludes the  

leaf nodes). 

𝑩𝒌 𝒙𝟏, … , 𝒙𝒌 =  𝒕𝒓𝒖𝒆 𝒊𝒇𝒇  𝒘𝒊𝒙𝒊 +  𝒘𝒊  ≥ 𝒎

𝒏

𝒊=𝒌+𝟏

𝒌

𝒊=𝟏

 

        
𝒂𝒏𝒅  𝒘𝒊𝒙𝒊 +  𝒘𝒌+𝟏 ≤ 𝒎

𝒌

𝒊=𝟏
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Algorithm SumOfSubsets(s, k, r) 

// S = w[j]*x[j] and r = w[j]. w[j]’s are in non decreasing order. It is 

//assumed that w[1]  m and w[j]  m. 

{ 

   x[k] = 1; 

   if(s+w[k] = m) then write(x[1:k]); 

   else if(s+w[k]+w[k+1]  m) then  

 SumOfSubset(s+w[k],k+1,r-w[k]); 

   if((s+r-w[k]  m) and (s+w[k+1]  m) then 

   { 

       x[k]=0; 

       SumOfSubset(s,k+1,r-w[k]); 

   } 

} 
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Example:  n = 6, w[1:6] = {5,10,12,13,15,18}, m = 30 

Partial state space tree 
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• Let G be a graph and m be a given positive integer. 

• The graph coloring problem is to discover whether the nodes of the 

graph G can be colored in such a way, that no two adjacent nodes have 

the same color yet only m colors are used. 

• This graph coloring problem is also known as m-colorability decision 

problem. 

• The smallest number of colors required to color a graph G is referred to 

as the chromatic number of that graph.  

• As the objective is to minimize the number of colors the graph coloring 

problem is also known as m-colorability optimization problem. 

• Graph coloring problem is a NP Complete problem. 

• If d is the degree of the given graph, then it can be colored with d+1 

colors. 
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• A graph is said to be planar if and only if it can be drawn in a plane in 

such a way no two edges cross each other. 

 

 

 

 

 

 

 

• A special case is the 4 - colors problem for planar graphs. The problem 

is to color the region in a map in such a way that no two adjacent regions 

have the same color.  

• A map can be easily transformed into a graph.  

• Each region of the map becomes the node, and if two regions are 

adjacent, they are joined by an edge. 
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• For solving the graph coloring problem, we represent the graph by its 

adjacency matrix G[1:n, 1:n], where, G[i, j]= 1 if (i, j) is an edge of G, 

and G[i, j] = 0 otherwise. 

• The colors are represented by the integers 1, 2, ..., m and the solutions 

are given by the n-tuple (x1, x2, x3, ..., xn), where xi is the color of node i. 

• The total computing time of mcoloring is O(nmn). 
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A 4-node graph and all possible 3-colorings 

1 2 3 4 

1 0 1 0 1 

2 1 0 1 0 

3 0 1 0 1 

4 1 0 1 0 

Adjacency matrix 
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Algorithm NextValue(k) 

{ 

  repeat 

 { 

    x[k] = (x[k]+1)mod(m+1); 

    if(x[k]=0) then return; 

    for j =1 to n do 

   { 

     if((G[k,j]0) and (x[k] = x[j])) then    

            break; 

   } 

   if(j=n+1) then return; 

}until(false); 

} 

Graph Coloring 
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Algorithm mColoring(k) 

//The graph is represented by its 

//boolean adjacency matrix G[1:n,1:n]. 

{ 

  repeat 

 { 

    NextValue(k); 

    if(x[k]=0) then return; 

    if(k=n) then 

        write(x[1:n]); 

    else mColoring(k+1); 

  }until false; 

} 
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• Let G = (V, E) be a connected graph with n vertices. 

• A Hamiltonian cycle is a round trip path along n edges of G that visits 

every vertex once and returns to its starting position. 

• A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. 

1, 2, 8, 7,6, 5, 4, 3, 1 

A, B, C, E, D, A 

A, D, E, C, B, A 
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• The input for the Hamiltonian graph problem can be the directed or 

undirected graph. The Hamiltonian problem involves checking if the 

Hamiltonian cycle is present in a graph G or not.  

• While generating the state space tree following bounding functions are to be 

considered, which are as follows: 

 The ith vertex in the path must be adjacent to the (i-1)th vertex in any path. 

 The starting vertex and the (n-1)th vertex should be adjacent. 

 The ith vertex cannot be one of the first (i-1)th vertex in the path. 

State space tree 

1 2 3 4 5 

1 0 1 1 0 1 

2 1 0 1 1 1 

3 1 1 0 1 0 

4 0 1 1 0 1 

5 1 1 0 1 0 

Boolean adjacency matrix 
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Algorithm NextValue(k) 

{ 

  repeat 

 { 

   x[k] = (x[k]+1)mod(n+1); 

   if(x[k]=0) then return; 

   if(G[x[k-1],x[k]]0) then  

   {  

      for j =1 to k-1 do 

            if(x[j]=x[k]) then break; 

      if(j=k) then 

         if((k<n) or ((k=n) and G[x[n],x[1]]0))  then 

                 return; 

   } 

  }until(false); 

} 

Hamiltonian cycles 
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Algorithm Hamiltonian(k) 

//The graph is stored as an 

//adjacency matrix G[1:n,1:n]. 

{ 

  repeat 

 { 

    NextValue(k); 

    if(x[k]=0) then return; 

    if(k=n) then 

        write(x[1:n]); 

    else Hamiltonian(k+1); 

  }until false; 

} 


