
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit – V

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore 2

Syllabus

UNIT - V: TRAVERSAL, SEARCHING & BACKTRACKING

Techniques for Binary Trees- Techniques for Graphs - The General

Method - The 8-Queens Problem – Sum of Subsets- Graph

Colouring- Hamiltonian Cycles.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni,

Sanguthevar Rajasekaran, Galgotia Publications, 2015.

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Techniques of Binary Trees

3

• A tree whose nodes have at most 2 children is called a binary tree.

• A traversal is a process that visits all the nodes in the tree.

• Since a tree is a nonlinear data structure, there is no unique traversal.

• We consider several traversal algorithms which we group in the

following two kinds

 depth-first traversal

 breadth-first traversal

• There are three different types of depth-first traversals:

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

• Generally, we traverse a tree to search or locate a given item or key in the

tree or to print all the values it contains.

Dr. R. Bhuvaneswari

In-order Traversal

Periyar Govt. Arts College

Cuddalore

• In this traversal method, the left subtree is visited first, then the root and

later the right sub-tree. We should always remember that every node may

represent a subtree itself.

• If a binary tree is traversed in-order, the output will produce sorted key

values in an ascending order.

• To traverse a non-empty binary tree in in-order, we perform the following

three operations:

1. traverse the left sub-tree in in-order.

2. visit the root.

3. traverse the right sub-tree in in-order.

• A node of a binary tree is defined as

 struct node

 {

 char data;

 struct node *lchild, *rchild;

 };

4

Dr. R. Bhuvaneswari

In-order Traversal

Periyar Govt. Arts College

Cuddalore

Algorithm Inorder(t)

{

 if t  0 then

 {

 Inorder(tlchild);

 visit(t);

 Inorder(trchild);

 }

}

5

Dr. R. Bhuvaneswari

Pre-order Traversal

Periyar Govt. Arts College

Cuddalore 6

• To traverse a non-empty binary tree in pre-order, we perform

the following three operations:

1. visit the root.

2. traverse the left sub-tree in pre-order.

3. traverse the right sub-tree in pre-order.

Algorithm Preorder(t)

{

 if t  0 then

 {

 visit(t);

 Preorder(tlchild);

 Preorder(trchild);

 }

}

Dr. R. Bhuvaneswari

Post-order Traversal

Periyar Govt. Arts College

Cuddalore 7

• To traverse a non-empty binary tree in post-order, we perform the

following three operations:

1. traverse the left sub-tree in post-order.

2. traverse the right sub-tree in post-order.

3. visit the root.

Algorithm Postorder(t)

{

 if t  0 then

 {

 Postorder(tlchild);

 Postorder(trchild);

 visit(t);

 }

}

Dr. R. Bhuvaneswari

Techniques for Graphs

Periyar Govt. Arts College

Cuddalore 8

• The graph is a non-linear data structure. It consists of some nodes and their

connected edges. The edges may be directed or undirected.

• A Graph G is a pair (V, E), where V is a finite set of elements called vertices

or nodes and E is a set of pairs of elements of V called edges or arcs.

• A graph in which every edge is directed is called directed graph or

digraph.

• A graph in which edges are undirected are called undirected graph.

• A graph which contains parallel edges is called multi-graph.

• A graph which does not contain parallel edges are called simple graph.

• Graph traversal is the problem of visiting all the nodes in a graph in a

particular manner, updating and/or checking their values along the way.

• The graph has two types of traversal algorithms.

 Depth First Search or Traversal

 Breadth First Search or Traversal

Dr. R. Bhuvaneswari

Depth First Search (DFS)

Periyar Govt. Arts College

Cuddalore 9

DFS follows the following rules:

1. Select an unvisited node s, visit it, and treat it as the current node.

2. Find an unvisited neighbor of the current node, visit it, and make it the

current new node.

3. If the current node has no unvisited neighbors, backtrack to its parent

and make that the new current node.

 Repeat the steps 2 and 3 until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from step 1.

Dr. R. Bhuvaneswari

Depth First Search (DFS)

Periyar Govt. Arts College

Cuddalore 10

DFS(v)

{

 visited[v] = 1;

 for each vertex w adjacent from v do

 {

 if (visited[w] = 0) then DFS(w);

 }

}

1, 2, 4, 8, 5, 6, 3, 7

Dr. R. Bhuvaneswari

Breadth First Search

Periyar Govt. Arts College

Cuddalore 11

• The Breadth First Search (BFS) traversal is an algorithm, which is used to

visit all of the nodes of a given graph.

• In this traversal algorithm one node is selected and then all of the adjacent

nodes are visited one by one.

• After completing all of the adjacent vertices, it moves further to check

another vertices and checks its adjacent vertices again.

• This method can be implemented using a queue.

• A Boolean array is used to ensure that a vertex is visited only once.

 Add the starting vertex to the queue.

 Repeat the following until the queue is empty.

 Remove the vertex at the front of the queue, call it v.

 Visit v.

 Add the vertices adjust to v to the queue, that were never visited.

Dr. R. Bhuvaneswari

BFS(v)
// q is a queue of unexplored vertices
{
 u = v;
 visited[v] = 1;
 repeat
 {
 for all vertices w adjacent from u do
 {
 if(visited[w] = 0) then
 {
 add w to q;
 visited[w] = 1;
 }
 }
 if q is empty then return;
 delete u from q;
 } until(false);
}

Breadth First Search

Periyar Govt. Arts College

Cuddalore 12

BFT(G, n)

{

 for i = 1 to n do

 visited[i] = 0;

 for i = 1 to n do

 if(visited[i] = 0) then BFS(i)

}

1, 2, 3, 4, 5, 6, 7, 8

Dr. R. Bhuvaneswari

Backtracking

Periyar Govt. Arts College

Cuddalore 13

• Backtracking is technique used to solve problems with a large search

space, by systematically trying and eliminating possibilities.

• The desired solution is expressed as an n-tuple (x1, …, xn), where xi are

chosen from some finite set Si.

• The problem to be solved finds a vector that maximizes (or minimizes) a

criterion function P(x1, …, xn).

• Suppose mi is the size of set Si. Then there are m = m1, m2, …., mn n-

tuples are possible candidates for satisfying the function P.

• If it is realized that the partial vector (x1, x2, …, xn) can in no way lead to

an optimal solution, then mi+1, …, mn possible test vectors can be ignored

entirely.

• Problems solved through backtracking requires that all the solutions satisfy

a complex set of constraints.

• Constraints are divided into two categories:

 Implicit constraints

 Explicit constrains

Dr. R. Bhuvaneswari

Backtracking

Periyar Govt. Arts College

Cuddalore 14

Explicit constraints are rules

that restrict each xi to take on

values only from a given set.

Implicit constraints are rules

that determine which of the

tuples in the solution space of

I satisfy the criterion function.

Eg. 4-queens problem

Explicit constraints – each

queen on different row.

Implicit constraints – all

queens must be on different

columns and no two queens

can be on the same diagonal.

Tree organization of 4-queens solution space

Dr. R. Bhuvaneswari

Backtracking

Periyar Govt. Arts College

Cuddalore 15

• Tuples that satisfy the explicit constraints define a solution space.

• The solution space can be organized into a tree.

• All paths from the root to other nodes define the state-space of the

problem.

• Live node is a node which has been generated and all of whose children

are not yet been generated .

• E-Node (Node being expanded) is the live node whose children are

currently being generated .

• Dead node is a node that is either not to be expanded further, or for

which all of its children have been generated.

• Bounding function will be used to kill live nodes without generating

all their children.

Dr. R. Bhuvaneswari

Backtracking

Periyar Govt. Arts College

Cuddalore 16

Algorithm IBacktrack(n)
{
 k=1;
 while(k0) do
 {
 if(there remains an untired
 x[k]  T(x[1], x[2], …, x[k-1]) and
 Bk(x[1], …, x[k] is true) then
 {
 if(x[1] … x[k] is a path to an
 answer node) then
 write (x[1:k]);
 k=k+1;
 }
 else
 k=k-1;
 }
}

Algorithm Backtrack(k)

{

 for(each x[k]  T(x[1], x[2], …,

x[k-1]) do

 {

 if (Bk(x[1], …, x[k]  0) then

 {

 if (x[1], x[2], …, x[k]) is a path to

an answer node) then

 write(x[1:k]);

 if(k<n) then Backtrack(k+1);

 }

 }

}

Dr. R. Bhuvaneswari

8-Queens Problem

Periyar Govt. Arts College

Cuddalore 17

• n – queens are placed on a n x n chess board, which means that the

chessboard has n rows and n columns and the n queens are placed on n x n

chessboard such that no two queens are placed in the same row or in the

same column or in same diagonal.

• All solutions to the n – queen’s problem can be represented as n–tuples

(x1, x2... xn) where xi is the column of the ith row where ith queen is placed.

• xi’s will all be distinct since no two queens can be placed in the same

column.

• Consider queen at [4,2]. Diagonal to this queen are a[3,1]

• 2 queens are placed at positions (i, j) and (k, l).

• They are on the same diagonal only if

 i-j = k-l e.g. 1-1 = 2-2

 or i+j = k+l e.g 1+4= 2+3

  i-k = j-l

• Therefore 2 queens lie on the same diagonal if and only if j-l = i-k

1, 1 1, 2 1, 3 1, 4

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4

4, 1 4, 2 4, 3 4, 4

Dr. R. Bhuvaneswari

8-Queens Problem

Periyar Govt. Arts College

Cuddalore 18

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Dr. R. Bhuvaneswari

8-Queens Problem

Periyar Govt. Arts College

Cuddalore 19

Algorithm Place(k,i)

// Returns true if a queen can be placed in

//kth row and ith column. Otherwise it

//returns false. X[] is a global array whose

//first (k-1) values have been set. Abs(r)

//returns the absolute value of n.

{

 for j = 1 to k-1 do

 {

 if((x[j] = i)) or (abs(x[j]-i) = abs(j-k))) then

 return false;

 }

 return true;

}

Algorithm NQueens(k, n)

{

 for i = 1 to n do

 {

 if Place(k,i) then

 {

 x[k] = i;

 if (k=n) then

 write(x[1:n]);

 else

 NQueens(k+1,n);

 }

 }

}

Dr. R. Bhuvaneswari

Sum of Subsets

Periyar Govt. Arts College

Cuddalore 20

• Sum of Subsets problem is to find subset of elements that are selected

from a given set whose sum adds up to a given number m.

• We are considering the set contains non-negative values. It is assumed that

the input set is unique (no duplicates are presented).

• Here backtracking approach is used for trying to select a valid subset.

• When an item is not valid, backtracking is done to get the previous subset

and add another element to get the solution.

Finding all subsets of wi, whose sum is m.

Ex. 1:

n = 4, (w1, w2, w3, w4) = (11,13,24,7), m = 31

Possible subsets are {11, 13, 7} and {24, 7}

Ex. 2:

n = 7, w = {5, 10, 12, 13, 15, 18}, m = 30

Possible subsets are {5, 10, 15}, {5, 12, 13} and {12, 18}

Dr. R. Bhuvaneswari

Sum of Subsets

Periyar Govt. Arts College

Cuddalore 21

The bounding functions used are

Example:

n = 3, m = 6, w = {2, 4, 6}

The full space tree for n = 3

contains 23 – 1 = 7 nodes

from which call could be

made (this excludes the

leaf nodes).

𝑩𝒌 𝒙𝟏, … , 𝒙𝒌 = 𝒕𝒓𝒖𝒆 𝒊𝒇𝒇 𝒘𝒊𝒙𝒊 + 𝒘𝒊 ≥ 𝒎

𝒏

𝒊=𝒌+𝟏

𝒌

𝒊=𝟏

𝒂𝒏𝒅 𝒘𝒊𝒙𝒊 + 𝒘𝒌+𝟏 ≤ 𝒎

𝒌

𝒊=𝟏

Dr. R. Bhuvaneswari

Sum of Subsets

Periyar Govt. Arts College

Cuddalore 22

Algorithm SumOfSubsets(s, k, r)

// S = w[j]*x[j] and r = w[j]. w[j]’s are in non decreasing order. It is

//assumed that w[1]  m and w[j]  m.

{

 x[k] = 1;

 if(s+w[k] = m) then write(x[1:k]);

 else if(s+w[k]+w[k+1]  m) then

 SumOfSubset(s+w[k],k+1,r-w[k]);

 if((s+r-w[k]  m) and (s+w[k+1]  m) then

 {

 x[k]=0;

 SumOfSubset(s,k+1,r-w[k]);

 }

}

Dr. R. Bhuvaneswari

Sum of Subsets

Periyar Govt. Arts College

Cuddalore 23

Example: n = 6, w[1:6] = {5,10,12,13,15,18}, m = 30

Partial state space tree

Dr. R. Bhuvaneswari

Graph Coloring

Periyar Govt. Arts College

Cuddalore 24

• Let G be a graph and m be a given positive integer.

• The graph coloring problem is to discover whether the nodes of the

graph G can be colored in such a way, that no two adjacent nodes have

the same color yet only m colors are used.

• This graph coloring problem is also known as m-colorability decision

problem.

• The smallest number of colors required to color a graph G is referred to

as the chromatic number of that graph.

• As the objective is to minimize the number of colors the graph coloring

problem is also known as m-colorability optimization problem.

• Graph coloring problem is a NP Complete problem.

• If d is the degree of the given graph, then it can be colored with d+1

colors.

Dr. R. Bhuvaneswari

Graph Coloring

Periyar Govt. Arts College

Cuddalore 25

• A graph is said to be planar if and only if it can be drawn in a plane in

such a way no two edges cross each other.

• A special case is the 4 - colors problem for planar graphs. The problem

is to color the region in a map in such a way that no two adjacent regions

have the same color.

• A map can be easily transformed into a graph.

• Each region of the map becomes the node, and if two regions are

adjacent, they are joined by an edge.

Dr. R. Bhuvaneswari

Graph Coloring

Periyar Govt. Arts College

Cuddalore 26

• For solving the graph coloring problem, we represent the graph by its

adjacency matrix G[1:n, 1:n], where, G[i, j]= 1 if (i, j) is an edge of G,

and G[i, j] = 0 otherwise.

• The colors are represented by the integers 1, 2, ..., m and the solutions

are given by the n-tuple (x1, x2, x3, ..., xn), where xi is the color of node i.

• The total computing time of mcoloring is O(nmn).

Dr. R. Bhuvaneswari

Graph Coloring

Periyar Govt. Arts College

Cuddalore 27

A 4-node graph and all possible 3-colorings

1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

Adjacency matrix

Dr. R. Bhuvaneswari

Algorithm NextValue(k)

{

 repeat

 {

 x[k] = (x[k]+1)mod(m+1);

 if(x[k]=0) then return;

 for j =1 to n do

 {

 if((G[k,j]0) and (x[k] = x[j])) then

 break;

 }

 if(j=n+1) then return;

}until(false);

}

Graph Coloring

Periyar Govt. Arts College

Cuddalore 28

Algorithm mColoring(k)

//The graph is represented by its

//boolean adjacency matrix G[1:n,1:n].

{

 repeat

 {

 NextValue(k);

 if(x[k]=0) then return;

 if(k=n) then

 write(x[1:n]);

 else mColoring(k+1);

 }until false;

}

Dr. R. Bhuvaneswari

Hamiltonian cycles

Periyar Govt. Arts College

Cuddalore 29

• Let G = (V, E) be a connected graph with n vertices.

• A Hamiltonian cycle is a round trip path along n edges of G that visits

every vertex once and returns to its starting position.

• A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

1, 2, 8, 7,6, 5, 4, 3, 1

A, B, C, E, D, A

A, D, E, C, B, A

Dr. R. Bhuvaneswari

Hamiltonian cycles

Periyar Govt. Arts College

Cuddalore 30

• The input for the Hamiltonian graph problem can be the directed or

undirected graph. The Hamiltonian problem involves checking if the

Hamiltonian cycle is present in a graph G or not.

• While generating the state space tree following bounding functions are to be

considered, which are as follows:

 The ith vertex in the path must be adjacent to the (i-1)th vertex in any path.

 The starting vertex and the (n-1)th vertex should be adjacent.

 The ith vertex cannot be one of the first (i-1)th vertex in the path.

State space tree

1 2 3 4 5

1 0 1 1 0 1

2 1 0 1 1 1

3 1 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

Boolean adjacency matrix

Dr. R. Bhuvaneswari

Algorithm NextValue(k)

{

 repeat

 {

 x[k] = (x[k]+1)mod(n+1);

 if(x[k]=0) then return;

 if(G[x[k-1],x[k]]0) then

 {

 for j =1 to k-1 do

 if(x[j]=x[k]) then break;

 if(j=k) then

 if((k<n) or ((k=n) and G[x[n],x[1]]0)) then

 return;

 }

 }until(false);

}

Hamiltonian cycles

Periyar Govt. Arts College

Cuddalore 31

Algorithm Hamiltonian(k)

//The graph is stored as an

//adjacency matrix G[1:n,1:n].

{

 repeat

 {

 NextValue(k);

 if(x[k]=0) then return;

 if(k=n) then

 write(x[1:n]);

 else Hamiltonian(k+1);

 }until false;

}

