Design and Analysis of Algorithms

Unit - V

Periyar Govt. Arts College Cuddalore

Dr. R. Bhuvaneswari
Assistant Professor
Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Syllabus

UNIT - V: TRAVERSAL, SEARCHING \& BACKTRACKING
Techniques for Binary Trees- Techniques for Graphs - The General Method - The 8-Queens Problem - Sum of Subsets- Graph Colouring- Hamiltonian Cycles.

TEXT BOOK

Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Galgotia Publications, 2015.

Techniques of Binary Trees

- A tree whose nodes have at most 2 children is called a binary tree.
- A traversal is a process that visits all the nodes in the tree.
- Since a tree is a nonlinear data structure, there is no unique traversal.
- We consider several traversal algorithms which we group in the following two kinds
$>$ depth-first traversal
$>$ breadth-first traversal
- There are three different types of depth-first traversals:
* In-order Traversal
* Pre-order Traversal
* Post-order Traversal
- Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the values it contains.

In-order Traversal

- In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. We should always remember that every node may represent a subtree itself.
- If a binary tree is traversed in-order, the output will produce sorted key values in an ascending order.
- To traverse a non-empty binary tree in in-order, we perform the following three operations:

1. traverse the left sub-tree in in-order.
2. visit the root.
3. traverse the right sub-tree in in-order.

- A node of a binary tree is defined as
struct node
\{
char data; struct node *lchild, *rchild; \};

In-order Traversal

Inorder Traversal: D, B, E, A, F, C , G

Pre-order Traversal

- To traverse a non-empty binary tree in pre-order, we perform the following three operations:

1. visit the root.
2. traverse the left sub-tree in pre-order.
3. traverse the right sub-tree in pre-order.

Algorithm Preorder(t)
\{
if $t \neq 0$ then
\{
visit(t);
Preorder($\mathrm{t} \rightarrow$ lchild); Preorder($t \rightarrow$ rchild $)$;

Preorder Traversal : A, B, D, E, C, F, G

Post-order Traversal

- To traverse a non-empty binary tree in post-order, we perform the following three operations:

1. traverse the left sub-tree in post-order.
2. traverse the right sub-tree in post-order.
3. visit the root.

Algorithm Postorder(t)
\{

$$
\text { if } t \neq 0 \text { then }
$$

\{
Postorder($\mathrm{t} \rightarrow$ lchild); Postorder($\mathrm{t} \rightarrow$ rchild); visit(t);

Postorder Traversal : D, E, B, F, G, C, A

Techniques for Graphs

- The graph is a non-linear data structure. It consists of some nodes and their connected edges. The edges may be directed or undirected.
- A Graph G is a pair (V, E), where V is a finite set of elements called vertices or nodes and E is a set of pairs of elements of V called edges or arcs.
- A graph in which every edge is directed is called directed graph or digraph.
- A graph in which edges are undirected are called undirected graph.
- A graph which contains parallel edges is called multi-graph.
- A graph which does not contain parallel edges are called simple graph.
- Graph traversal is the problem of visiting all the nodes in a graph in a particular manner, updating and/or checking their values along the way.
- The graph has two types of traversal algorithms.
$>$ Depth First Search or Traversal
> Breadth First Search or Traversal

Depth First Search (DFS)

DFS follows the following rules:

1. Select an unvisited node s, visit it, and treat it as the current node.
2. Find an unvisited neighbor of the current node, visit it, and make it the current new node.
3. If the current node has no unvisited neighbors, backtrack to its parent and make that the new current node.

Repeat the steps 2 and 3 until no more nodes can be visited.
4. If there are still unvisited nodes, repeat from step 1.

Depth First Search (DFS)

```
DFS(v)
{
    visited[v] = 1;
    for each vertex w adjacent from v do
    {
        if (visited[w] = 0) then DFS(w);
    }
}
```


$1,2,4,8,5,6,3,7$

Breadth First Search

- The Breadth First Search (BFS) traversal is an algorithm, which is used to visit all of the nodes of a given graph.
- In this traversal algorithm one node is selected and then all of the adjacent nodes are visited one by one.
- After completing all of the adjacent vertices, it moves further to check another vertices and checks its adjacent vertices again.
- This method can be implemented using a queue.
- A Boolean array is used to ensure that a vertex is visited only once.
\checkmark Add the starting vertex to the queue.
\checkmark Repeat the following until the queue is empty.
\checkmark Remove the vertex at the front of the queue, call it v .
\checkmark Visit v.
\checkmark Add the vertices adjust to v to the queue, that were never visited.

Breadth First Search

```
BFT(G, n)
{
    for i=1 to n do
        visited[i] = 0;
    for i = 1 to n do
        if(visited[i] = 0) then BFS(i)
    }
```


$1,2,3,4,5,6,7,8$

```
BFS(v)
// q is a queue of unexplored vertices
{
    u = v;
    visited[v] = 1;
    repeat
    {
        for all vertices w adjacent from u do
        {
        if(visited[w] = 0) then
        {
                add w to q;
                visited[w] = 1;
        }
        }
        if q is empty then return;
        delete u from q;
    } until(false);
}
```


Backtracking

- Backtracking is technique used to solve problems with a large search space, by systematically trying and eliminating possibilities.
- The desired solution is expressed as an n-tuple $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, where x_{i} are chosen from some finite set S_{i}.
- The problem to be solved finds a vector that maximizes (or minimizes) a criterion function $\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$.
- Suppose m_{i} is the size of set S_{i}. Then there are $m=m_{1}, m_{2}, \ldots ., m_{n} n-$ tuples are possible candidates for satisfying the function P.
- If it is realized that the partial vector $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ can in no way lead to an optimal solution, then $\mathrm{m}_{\mathrm{i}+1}, \ldots, \mathrm{~m}_{\mathrm{n}}$ possible test vectors can be ignored entirely.
- Problems solved through backtracking requires that all the solutions satisfy a complex set of constraints.
- Constraints are divided into two categories:
\Rightarrow Implicit constraints
$>$ Explicit constrains

Backtracking

Explicit constraints are rules that restrict each x_{i} to take on values only from a given set. Implicit constraints are rules that determine which of the tuples in the solution space of I satisfy the criterion function. Eg. 4-queens problem Explicit constraints - each queen on different row. Implicit constraints - all queens must be on different columns and no two queens can be on the same diagonal.

Tree organization of 4-queens solution space

Backtracking

- Tuples that satisfy the explicit constraints define a solution space.
- The solution space can be organized into a tree.
- All paths from the root to other nodes define the state-space of the problem.
- Live node is a node which has been generated and all of whose children are not yet been generated.
- E-Node (Node being expanded) is the live node whose children are currently being generated.
- Dead node is a node that is either not to be expanded further, or for which all of its children have been generated.
- Bounding function will be used to kill live nodes without generating all their children.

Backtracking

```
Algorithm IBacktrack(n)
\{
    \(\mathrm{k}=1\);
    while \((\mathrm{k} \neq 0)\) do
    \{
        if(there remains an untired
            \(x[k] \in T(x[1], x[2], \ldots, x[k-1])\) and
        \(B_{k}(x[1], \ldots, x[k]\) is true \()\) then
        \{
            \(\operatorname{if}(x[1] \ldots x[k]\) is a path to an
                answer node) then
            write (x[1:k]);
            \(\mathrm{k}=\mathrm{k}+1\);
        \}
        else
                \(\mathrm{k}=\mathrm{k}-1\);
    \}
\}
```


Algorithm IBacktrack(n)

```
\{
```

```
Algorithm Backtrack(k)
\{
    for \((\) each \(x[k] \in T(x[1], x[2], \ldots\),
        \(x[k-1])\) do
    \{
    if \(\left(B_{k}(x[1], \ldots, x[k] \neq 0)\right.\) then
    \{
        if \((x[1], x[2], \ldots, x[k])\) is a path to
        an answer node) then
                write(x[1:k]);
        \(\operatorname{if}(\mathrm{k}<\mathrm{n})\) then Backtrack \((\mathrm{k}+1)\);
    \}
    \}
\}
```


8-Queens Problem

- n - queens are placed on a n x chess board, which means that the chessboard has n rows and n columns and the n queens are placed on $\mathrm{n} \times \mathrm{n}$ chessboard such that no two queens are placed in the same row or in the same column or in same diagonal.
- All solutions to the n - queen's problem can be represented as n -tuples $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right)$ where x_{i} is the column of the $\mathrm{i}^{\text {th }}$ row where $\mathrm{i}^{\text {th }}$ queen is placed.
- x_{i} 's will all be distinct since no two queens can be placed in the same column.
- Consider queen at [4,2]. Diagonal to this queen are a[3,1]
- 2 queens are placed at positions (i, j) and (k, l).
- They are on the same diagonal only if

$$
\begin{aligned}
& \mathrm{i}-\mathrm{j}=\mathrm{k}-1 \quad \text { e.g. } 1-1=2-2 \\
& \text { or } \mathrm{i}+\mathrm{j}=\mathrm{k}+1 \quad \text { e.g } 1+4=2+3 \\
& \Rightarrow \mathrm{i}-\mathrm{k}=\mathrm{j}-1
\end{aligned}
$$

1,1	1,2	1,3	1,4
2,1	2,2	2,3	2,4
3,1	3,2	3,3	3,4
4,1	4,2	4,3	4,4

- Therefore 2 queens lie on the same diagonal if and only if $|\mathrm{j}-1|=|\mathrm{i}-\mathrm{k}|$

8-Queens Problem

8-Queens Problem

Algorithm Place(k,i)

// Returns true if a queen can be placed in $/ / \mathrm{k}^{\text {th }}$ row and $\mathrm{i}^{\text {th }}$ column. Otherwise it $/ /$ returns false. X[] is a global array whose //first (k-1) values have been set. Abs(r) $/ /$ returns the absolute value of n.

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{k}-1 \text { do }
$$

\{
$\operatorname{if}((x[j]=i))$ or $(\operatorname{abs}(x[j]-i)=\operatorname{abs}(j-k)))$ then return false;
\}
return true;
\}

Sum of Subsets

- Sum of Subsets problem is to find subset of elements that are selected from a given set whose sum adds up to a given number m .
- We are considering the set contains non-negative values. It is assumed that the input set is unique (no duplicates are presented).
- Here backtracking approach is used for trying to select a valid subset.
- When an item is not valid, backtracking is done to get the previous subset and add another element to get the solution.
Finding all subsets of w_{i}, whose sum is m.
Ex. 1:
$\mathrm{n}=4,\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=(11,13,24,7), \mathrm{m}=31$
Possible subsets are $\{11,13,7\}$ and $\{24,7\}$
Ex. 2:
$\mathrm{n}=7, \mathrm{w}=\{5,10,12,13,15,18\}, \mathrm{m}=30$
Possible subsets are $\{5,10,15\},\{5,12,13\}$ and $\{12,18\}$

Sum of Subsets

The bounding functions used are

$$
\begin{aligned}
& B_{k}\left(x_{1}, \ldots, x_{k}\right)=\text { true iff } \sum_{i=1}^{k} w_{i} x_{i}+\sum_{i=k+1}^{n} w_{i} \geq m \\
& \text { and } \sum_{i=1}^{k} w_{i} x_{i}+w_{k+1} \leq m
\end{aligned}
$$

Example:

$\mathrm{n}=3, \mathrm{~m}=6$, $\mathrm{w}=\{2,4,6\}$
The full space tree for $\mathrm{n}=3$ contains $2^{3}-1=7$ nodes from which call could be made (this excludes the leaf nodes).

Sum of Subsets

Algorithm SumOfSubsets(s, k, r)
$/ / S=\Sigma w[j] * x[j]$ and $r=\Sigma w[j] . w[j]$'s are in non decreasing order. It is $/ /$ assumed that $\mathrm{w}[1] \leq \mathrm{m}$ and $\Sigma \mathrm{w}[\mathrm{j}] \geq \mathrm{m}$.
\{
$\mathrm{x}[\mathrm{k}]=1$;
if $(\mathrm{s}+\mathrm{w}[\mathrm{k}]=\mathrm{m})$ then write $(\mathrm{x}[1: \mathrm{k}])$;
else if($s+w[k]+w[k+1] \leq m$) then
SumOfSubset(s+w[k],k+1,r-w[k]);
$\operatorname{if}((\mathrm{s}+\mathrm{r}-\mathrm{w}[\mathrm{k}] \geq \mathrm{m})$ and $(\mathrm{s}+\mathrm{w}[\mathrm{k}+1] \leq \mathrm{m})$ then
\{
$\mathrm{x}[\mathrm{k}]=0$;
SumOfSubset(s,k+1,r-w[k]);
\}
\}

Sum of Subsets

Example: $\mathrm{n}=6, \mathrm{w}[1: 6]=\{5,10,12,13,15,18\}, \mathrm{m}=30$

Graph Coloring

- Let \mathbf{G} be a graph and \mathbf{m} be a given positive integer.
- The graph coloring problem is to discover whether the nodes of the graph G can be colored in such a way, that no two adjacent nodes have the same color yet only m colors are used.
- This graph coloring problem is also known as m-colorability decision problem.
- The smallest number of colors required to color a graph G is referred to as the chromatic number of that graph.
- As the objective is to minimize the number of colors the graph coloring problem is also known as m-colorability optimization problem.
- Graph coloring problem is a NP Complete problem.
- If \mathbf{d} is the degree of the given graph, then it can be colored with $\mathbf{d}+\mathbf{1}$ colors.

Graph Coloring

- A graph is said to be planar if and only if it can be drawn in a plane in such a way no two edges cross each other.

- A special case is the 4 - colors problem for planar graphs. The problem is to color the region in a map in such a way that no two adjacent regions have the same color.
- A map can be easily transformed into a graph.
- Each region of the map becomes the node, and if two regions are adjacent, they are joined by an edge.

Graph Coloring

- For solving the graph coloring problem, we represent the graph by its adjacency matrix $G[1: n, 1: n]$, where, $G[i, j]=1$ if (i, j) is an edge of G, and $G[i, j]=0$ otherwise.
- The colors are represented by the integers $1,2, \ldots, \mathrm{~m}$ and the solutions are given by the n-tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$), where x_{i} is the color of node i .
- The total computing time of mcoloring is $\mathrm{O}\left(\mathrm{nm}^{\mathrm{n}}\right)$.

Graph Coloring

A 4-node graph and all possible 3-colorings

	1	2	3	4
1	0	1	0	1
2	1	0	1	0
3	0	1	0	1
4	1	0	1	0

Adjacency matrix

Graph Coloring

```
Algorithm mColoring(k)
//The graph is represented by its
//boolean adjacency matrix G[1:n,1:n].
{
    repeat
{
    NextValue(k);
    if(x[k]=0) then return;
    if(k=n) then
        write(x[1:n]);
    else mColoring(k+1);
    }until false;
}
```

```
Algorithm NextValue(k)
\{
    repeat
    \{
        \(\mathrm{x}[\mathrm{k}]=(\mathrm{x}[\mathrm{k}]+1) \bmod (\mathrm{m}+1)\);
        if \((\mathrm{x}[\mathrm{k}]=0)\) then return;
        for \(\mathrm{j}=1\) to n do
    \{
        \(\operatorname{if}((\mathrm{G}[\mathrm{k}, \mathrm{j}] \neq 0)\) and \((\mathrm{x}[\mathrm{k}]=\mathrm{x}[\mathrm{j}]))\) then
            break;
    \}
    if \((\mathrm{j}=\mathrm{n}+1)\) then return;
\}until(false);
\}
```


Hamiltonian cycles

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph with n vertices.
- A Hamiltonian cycle is a round trip path along n edges of G that visits every vertex once and returns to its starting position.
- A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

$1,2,8,7,6,5,4,3,1$

A, B, C, E, D, A A, D, E, C, B, A

Hamiltonian cycles

- The input for the Hamiltonian graph problem can be the directed or undirected graph. The Hamiltonian problem involves checking if the Hamiltonian cycle is present in a graph \mathbf{G} or not.
- While generating the state space tree following bounding functions are to be considered, which are as follows:
$>$ The $\mathbf{i}^{\text {th }}$ vertex in the path must be adjacent to the $(\mathbf{i}-\mathbf{1})^{\text {th }}$ vertex in any path.
$>$ The starting vertex and the $(\mathbf{n} \mathbf{- 1})^{\text {th }}$ vertex should be adjacent.
$>$ The $\mathrm{i}^{\text {th }}$ vertex cannot be one of the first ($\left.\mathbf{i}-\mathbf{1}\right)^{\text {th }}$ vertex in the path.

Dr. R. Bhuvaneswari

	1	2	3	4	5
1	0	1	1	0	1
2	1	0	1	1	1
3	1	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Boolean adjacency matrix

Periyar Govt. Arts College Cuddalore

Hamiltonian cycles


```
Algorithm NextValue(k)
\{
    repeat
\{
    \(\mathrm{x}[\mathrm{k}]=(\mathrm{x}[\mathrm{k}]+1) \bmod (\mathrm{n}+1)\);
    \(\operatorname{if}(\mathrm{x}[\mathrm{k}]=0)\) then return;
    \(\operatorname{if}(\mathrm{G}[\mathrm{x}[\mathrm{k}-1], \mathrm{x}[\mathrm{k}]] \neq 0)\) then
    \{
        for \(\mathrm{j}=1\) to \(\mathrm{k}-1\) do
            \(\operatorname{if}(x[j]=x[k])\) then break;
        if \((\mathrm{j}=\mathrm{k})\) then
            \(\operatorname{if}((\mathrm{k}<\mathrm{n})\) or \(((\mathrm{k}=\mathrm{n})\) and \(\mathrm{G}[\mathrm{x}[\mathrm{n}], \mathrm{x}[1]] \neq 0))\) then
                return;
    \}
\}until(false);
\}
```

