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Introduction to the Concept of Algorithms 

• Algorithm 

• Problem Solving 

• Design of an Algorithm 

• Analysis of an algorithm 
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Notion of an Algorithm 

Computer 

Algorithm 

Problem 

Input Output 
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Algorithm 

• An algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task i.e., for obtaining a required 

output for any legitimate input in a finite amount of time. 

• All algorithms must satisfy the following criteria: 

 Definiteness. Each instruction is clear and unambiguous. 

 Effectiveness. Every instruction must be very basic so that it 

can carried out, by a person using pencil and paper. 

 Finiteness. If we trace out the instructions of an algorithm, 

then for all cases, the algorithm terminates after a finite 

number of steps.  

 Input. Zero or more quantities are externally supplied. 

 Output. At least one quantity is produced. 
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Algorithm Specification 

• An algorithm can be described in 

three ways: 

 Natural language in English 

 Graphic representation called 

flowchart 

 Pseudo-code method 

 In this method we typically 

represent algorithms as 

program, which resembles C 

language 

1. Input two numbers 

2. Add  the two numbers 

3. Print the result 
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Pseudo-code Conventions 

1. Comments begin with // and continue until the end of line. 

2. Blocks are indicated with matching braces { and }. 

3. An identifier begins with a letter. The data types of 

variables are not explicitly declared. 

4. Assignment of values to variables is done using the 

assignment statement. 

  ‹variable› := ‹expression›; 

5. There are two Boolean values true and false. 

Logical operators: AND, OR, NOT 

Relational operators: , ≤, =, ≠, >, ≥ 
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Pseudo-code Conventions 

6. The following looping statements are used: 

 while, for and repeat-until 

while loop: 

while ‹condition› do 

{ 

        ‹statement 1› 

 .  

 . 

        ‹statement n› 

} 

for loop: 

for variable:= value1 to  value2 

 step step-value do 

{ 

 ‹statement 1› 

         .  

         . 

         ‹statement n› 

} 

repeat-until: 

repeat 

 ‹statement 1› 

         .  

         . 

         ‹statement n› 

until ‹condition› 
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Pseudo-code Conventions 

7. A conditional statement has the following forms: 

if ‹condition› then ‹statement› 

if ‹condition› then ‹statement 1› else ‹statement 2›  

case statement: 

case  

{ 

 :‹condition 1›: ‹statement 1›  

   . 

   . 

 :‹condition n›: ‹statement n› 

 :else: ‹statement n+1›  

} 
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Pseudo-code Conventions 

8. Input and output are done using the instructions read and 

write. 

9. There is only one type of procedure: Algorithm. 

  Algorithm contains  

 Heading 

 Body 

 The heading takes the form 

  Algorithm Name (‹parameter list›)         heading 

  { 

   ……          body 

   …… 

  } 
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Pseudo-code Conventions 

1.  Algorithm Max(A, n) 

2. // A is an array of size n. 

3. { 

4. Result := A[1]; 

5. for i :=2 to n do 

6. if A[i] > result then 

7.         Result := A[i]; 

8. return Result; 

9. } 

n = 5, result = 10 
A[1] = 10 
A[2] = 87       result = 87 
A[3] = 45 
A[4] = 66 
A[5] = 99       result = 99 
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Algorithm Analysis 

Study of algorithm involves three major parts: 

• Designing the algorithm 

• Proving the correctness of the algorithm 

• Analysing the algorithm 

Analysing the algorithm deals with 

1. Space Complexity 

2. Time Complexity 

Practically, time and space complexity can be reduced only 

to certain levels, as later on reduction of time increases 

the space and vice-versa → time-space trade-off. 
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Algorithm Analysis 

Method - 1 

int ary1[n]; 

int ary2[n]; 

for (int i=0; in; i++) 

       ary2[i] = ary1[(n-1)-i]; 

• An extra array of size n is 

used 

• So total space required is 2n 

• n assignments are made and 

the time complexity is n units 

of time. 
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Algorithm Analysis 

int  ary1[n]; 

int k = floor(n/2); 

for (int i=0;i<k;i++) 

    swap(&ary1[i],&ary1[(n-1)-i]; 

 

swap(int *a, int *b) 

{ 

int temp = *a; 
*a = *b; 
*b = *temp; 
} 

•  One array of size n and a 

temporary variable temp is 

used. 

• So space occupied is n+1 

• Swapping - 3 assignments 

are required. 

• Number of times 

performed is half the size 

of the array. 

• So the time complexity is 

3n/2. 
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Asymptotic Notations 

• Three standard notations 

 Big-oh (O) : asymptotic “less than” 

 F(n) = O(g(n)) implies: f(n) “≤” g(n) 

 Big omega () : asymptotic “greater than” 

 F(n) = (g(n)) implies: f(n) “≥” g(n) 

 Theta () : asymptotic “equality” 

 F(n) = (g(n)) implies: f(n) “” g(n) 

• Time complexity of a function may be one of the following 
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Asymptotic Notations 

Big-Oh 

The function f(n) = O(g(n)) if and only if there exists positive 

constant c and n0 such that f(n) ≤ c*g(n) for every n ≥ n0 

 

Example: 

 f(n) = 2n+3 

 

1. 2n+3 ≤ 10n for every n ≥ 1 

    f(n) = O(n) 

 

2. 2n+3 ≤ 2n2 + 3n2 

    2n+3 ≤ 5n2 

    f(n) = O(n2) 
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Asymptotic Notations 

Omega 

The function f(n) = (g(n)) if and only if there exists positive 

constant c and n0 such that f(n) ≥ c*g(n) for every n ≥ n0 

 

Example: 

 f(n) = 2n+3 

 

1. 2n+3 ≥ 1*n for every n ≥ 1 

    f(n) = (n) 

 

2. 2n+3 ≥ 1*logn 

    f(n) = (logn) 
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Asymptotic Notations 

Theta 

The function f(n) = (g(n)) if and only if there exists positive 

constant c1, c2 and n0 such that  

 c1*g(n) ≤ f(n) ≤ c2*g(n) for every n ≥ n0 

  

Example: 

 f(n) = 2n+3 

      1*n ≤ 2n+3 ≤ 5*n 

       f(n) = (n) 
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Properties of big oh(O) notation 

1. O(f(n)) + O(g(n)) = O(max{f(n),g(n)}) 

2. F(n) = O(g(n)) and g(n) ≤ h(n) implies f(n) = O(h(n)) 

3. Any function can be said as an order of itself. That is, f(n) = O(f(n)) 

  f(n) = 1*f(n) 

4. Any  constant value is equivalent to O(1). That is, c = O(1) 

5. If limn→ {f(n)/g(n)}   R > 0 then f(n)  (g(n)) 

  R → set of non negative real numbers 

6. If limn→ {f(n)/g(n)} = 0 then f(n)  O(g(n)) but f(n)  (g(n) 

7. If limn→ {f(n)/g(n)} =  then f(n)  (g(n)) but f(n)  (g(n) 
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Recurrence Equations 
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Recurrence equations can be classified into 

• Homogeneous recurrence equations 

• Inhomogeneous recurrence equations 

Suppose T(n) is the time complexity of an algorithm for the input size n. 

Assume that T(n) is recursively defined as 

 T(n) = b1T(n-1) + b2T(n-2) + …… + bkT(n-k)  

 a0T(n) + a1T(n-1) + …….. + akT(n-k) = 0 

Let us denote T(i) as xi 

 a0x
n +a1x

n-1 + ……… + akx
n-k = 0 

which is a homogeneous recurrence equation. 

 a0x
k + a1x

k-1 + …….. + ak = 0,  n=k 

will have k roots. Let the roots be r1, r2, ….. rk.  

They may or may not be same. 
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Homogeneous Recurrence Equations 

21 

Periyar  Govt. Arts College 

Cuddalore 

Solving homogeneous recurrence equation 

Case (i): All roots are distinct 

 eg. x2-5x+6 = 0 

      (x-3)(x-2) = 0         => x = 3 and 2 

General solution is T(n) = c13
n +c22

n 

 

 

Case (ii): Suppose some of p roots are equal and the remaining are 

distinct. 

 eg. (x-2)3(x-3) = 0      => x = 2,2,2,3 

General solution is T(n) = C12
n + C2n2n + C3n

22n + C43
n 
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Inhomogeneous Recurrence Equations 
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A linear non-homogenous recurrence relation with constant 

coefficients is a recurrence relation of the form 

 an = c1an-1 + c2an-2 + … + ckan-k+ f(n) 

where c1, c2, …, ck are real numbers, and f(n) is a function 

depending only on n.  

The recurrence relation  

 an = c1an-1 + c2an-2 + … + ckan-k,  

is called the associated homogeneous recurrence relation. 

This recurrence includes k initial conditions.  

a0 = C0, a1 = C1 … ak = Ck 
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Inhomogeneous Recurrence Equations 
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Case (i): Solve the recurrence equation 

           T(n) – 2T(n-1) = 1  subject to T(0) = 0 

Proof: The characteristic equation is            

(x-2)(x-1)=0. Therefore, the roots are 2 and 1. 

Now, the general solution is  

 T(n) = c11
n + c22

n 

Since T(0) = 0, from the given equation T(1) 

will be 1.  

Thus, from the general solution we get c1 = -1 

and c2 = 1.  

So, 

 T(n) = 2n – 1 = (2n) 

n = 0, T(0) = c1 + c2 

ie., c1+ c2 = 0     ------- 1 

n =1, T(1) = c1 + 2c2 

ie., c1 + 2c2 = 1  ------- 2 

from 1, c1 = -c2 

substituting in 2, 

-c2 + 2c2 = 1 → c2 = 1  

from 1, c2 = -c1 

substituting in 2, 

c1 +2(-c1) = 1 → c1 = -1 
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Inhomogeneous Recurrence Equations 
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Case (ii): Solve the recurrence equation 

 T(n) = 2T(n-1) + n2n + n2 

Proof: The characteristic equation is (x-2)(x-2)2(x-1)3 = 0. That is 

(x-2)3(x-1)3 = 0. Therefore, the roots are 2, 2, 2, 1, 1 and 1. Now, the 

general solution is 

 T(n) = c12
n + c2n2n + c3n

22n+ c41
n + c5n1n + c6n

21n 

Hence, T(n) = O(n22n) 
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Analysis of linear search 
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• Algorithms are analyzed to get best-case, worst-case and average-

case. 

• Each problem is defined on a certain domain 

 eg. Algorithm to multiply two integers. In this case, the domain 

of the problem is a set of integers. 

• From the domain, we can derive an instance of the problem. 

 Any two integers may be an instance to the above problem. 

• So, when an algorithm is analyzed, it is necessary that the analyzed 

value is satisfiable for all instances of the domain. 

• Let Dn be the domain of a problem, where n be the size of the input. 

• Let I  Dn be an instance of the problem taken from the domain Dn. 

• T(I) be the computation time of the algorithm for the instance I  Dn  
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Analysis of linear search 

26 

Periyar  Govt. Arts College 

Cuddalore 

Best-case analysis: 

This gives the minimum computed time of the algorithm with respect to 

all instances from the respective domain. 

  B(n) = min{T(I) | I  Dn} 

Worst-case analysis: 

This gives the maximum computation time of the algorithm with respect 

to all instances from the respective domain. 

  W(n) = max{T(I) | I  Dn} 

Average-case analysis: 

 

 

where p(I) is the average probability with respect to the instance I. 
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Analysis of linear search 
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int linearsearch(char A[], int size, char ch) 

{ 

  for (int i=0; i<size; i++) 

  { 

    if (A[i] == ch) 

  return(i); 

  } 

  return(-1); 

} 

Location of the 
element 

Number of 
comparisons required 

0 1 

1 2 

2 3 

. 

. 
. 
. 

n-1 n 

not in the array n 
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Analysis of linear search 
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B(n) = min{1,2,……, n}  = 1 

      = O(1) 

W(n) = max{1, 2, ……., n} = n 

      = O(n) 

Let k be the probability of x being in the array.  

Successful search = 1+2+3+….+n = n(n+1)/2 

 

 

Probability of unsuccessful search = 1 – k 

A(n) = k * (n+1)/2 + (1-k) * n,  where n → number of unsuccessful search 

Suppose x is in the array, then k = 1. Therefore, 

A(n) = (n+1)/2 = O(n) 

Average = 
𝑛(𝑛+1)/2

𝑛
 = 

𝑛+1

2
 


