
Dr. R. Bhuvaneswari

Design and Analysis of

Algorithms

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

1

Unit - I

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Introduction to the Concept of Algorithms

Syllabus

UNIT-I

Algorithm Analysis – Time Space Tradeoff – Asymptotic Notations –

Conditional asymptotic notation – Removing condition from the

conditional asymptotic notation - Properties of big-Oh notation –

Recurrence equations – Solving recurrence equations – Analysis of

linear search.

Text Book:

K.S. Easwarakumar, Object Oriented Data Structures using C++,

Vikas Publishing House pvt. Ltd., 2000 (For Unit I)

2

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Introduction to the Concept of Algorithms

• Algorithm

• Problem Solving

• Design of an Algorithm

• Analysis of an algorithm

3

Dr. R. Bhuvaneswari

Notion of an Algorithm

Computer

Algorithm

Problem

Input Output

4

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm

• An algorithm is a finite set of instructions that, if followed,

accomplishes a particular task i.e., for obtaining a required

output for any legitimate input in a finite amount of time.

• All algorithms must satisfy the following criteria:

 Definiteness. Each instruction is clear and unambiguous.

 Effectiveness. Every instruction must be very basic so that it

can carried out, by a person using pencil and paper.

 Finiteness. If we trace out the instructions of an algorithm,

then for all cases, the algorithm terminates after a finite

number of steps.

 Input. Zero or more quantities are externally supplied.

 Output. At least one quantity is produced.

5

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Specification

• An algorithm can be described in

three ways:

 Natural language in English

 Graphic representation called

flowchart

 Pseudo-code method

 In this method we typically

represent algorithms as

program, which resembles C

language

1. Input two numbers

2. Add the two numbers

3. Print the result

6

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Pseudo-code Conventions

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces { and }.

3. An identifier begins with a letter. The data types of

variables are not explicitly declared.

4. Assignment of values to variables is done using the

assignment statement.

 ‹variable› := ‹expression›;

5. There are two Boolean values true and false.

Logical operators: AND, OR, NOT

Relational operators: , ≤, =, ≠, >, ≥

7

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Pseudo-code Conventions

6. The following looping statements are used:

 while, for and repeat-until

while loop:

while ‹condition› do

{

 ‹statement 1›

 .

 .

 ‹statement n›

}

for loop:

for variable:= value1 to value2

 step step-value do

{

 ‹statement 1›

 .

 .

 ‹statement n›

}

repeat-until:

repeat

 ‹statement 1›

 .

 .

 ‹statement n›

until ‹condition›

8

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Pseudo-code Conventions

7. A conditional statement has the following forms:

if ‹condition› then ‹statement›

if ‹condition› then ‹statement 1› else ‹statement 2›

case statement:

case

{

 :‹condition 1›: ‹statement 1›

 .

 .

 :‹condition n›: ‹statement n›

 :else: ‹statement n+1›

}

9

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Pseudo-code Conventions

8. Input and output are done using the instructions read and

write.

9. There is only one type of procedure: Algorithm.

 Algorithm contains

 Heading

 Body

 The heading takes the form

 Algorithm Name (‹parameter list›) heading

 {

 …… body

 ……

 }

10

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Pseudo-code Conventions

1. Algorithm Max(A, n)

2. // A is an array of size n.

3. {

4. Result := A[1];

5. for i :=2 to n do

6. if A[i] > result then

7. Result := A[i];

8. return Result;

9. }

n = 5, result = 10
A[1] = 10
A[2] = 87 result = 87
A[3] = 45
A[4] = 66
A[5] = 99 result = 99

11

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Analysis

Study of algorithm involves three major parts:

• Designing the algorithm

• Proving the correctness of the algorithm

• Analysing the algorithm

Analysing the algorithm deals with

1. Space Complexity

2. Time Complexity

Practically, time and space complexity can be reduced only

to certain levels, as later on reduction of time increases

the space and vice-versa → time-space trade-off.

12

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Analysis

Method - 1

int ary1[n];

int ary2[n];

for (int i=0; in; i++)

 ary2[i] = ary1[(n-1)-i];

• An extra array of size n is

used

• So total space required is 2n

• n assignments are made and

the time complexity is n units

of time.

13

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Analysis

int ary1[n];

int k = floor(n/2);

for (int i=0;i<k;i++)

 swap(&ary1[i],&ary1[(n-1)-i];

swap(int *a, int *b)

{

int temp = *a;
*a = *b;
*b = *temp;
}

• One array of size n and a

temporary variable temp is

used.

• So space occupied is n+1

• Swapping - 3 assignments

are required.

• Number of times

performed is half the size

of the array.

• So the time complexity is

3n/2.

14

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Asymptotic Notations

• Three standard notations

 Big-oh (O) : asymptotic “less than”

 F(n) = O(g(n)) implies: f(n) “≤” g(n)

 Big omega () : asymptotic “greater than”

 F(n) = (g(n)) implies: f(n) “≥” g(n)

 Theta () : asymptotic “equality”

 F(n) = (g(n)) implies: f(n) “” g(n)

• Time complexity of a function may be one of the following

15

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Asymptotic Notations

Big-Oh

The function f(n) = O(g(n)) if and only if there exists positive

constant c and n0 such that f(n) ≤ c*g(n) for every n ≥ n0

Example:

 f(n) = 2n+3

1. 2n+3 ≤ 10n for every n ≥ 1

 f(n) = O(n)

2. 2n+3 ≤ 2n2 + 3n2

 2n+3 ≤ 5n2

 f(n) = O(n2)

16

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Asymptotic Notations

Omega

The function f(n) = (g(n)) if and only if there exists positive

constant c and n0 such that f(n) ≥ c*g(n) for every n ≥ n0

Example:

 f(n) = 2n+3

1. 2n+3 ≥ 1*n for every n ≥ 1

 f(n) = (n)

2. 2n+3 ≥ 1*logn

 f(n) = (logn)

17

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Asymptotic Notations

Theta

The function f(n) = (g(n)) if and only if there exists positive

constant c1, c2 and n0 such that

 c1*g(n) ≤ f(n) ≤ c2*g(n) for every n ≥ n0

Example:

 f(n) = 2n+3

 1*n ≤ 2n+3 ≤ 5*n

 f(n) = (n)

18

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Properties of big oh(O) notation

1. O(f(n)) + O(g(n)) = O(max{f(n),g(n)})

2. F(n) = O(g(n)) and g(n) ≤ h(n) implies f(n) = O(h(n))

3. Any function can be said as an order of itself. That is, f(n) = O(f(n))

 f(n) = 1*f(n)

4. Any constant value is equivalent to O(1). That is, c = O(1)

5. If limn→ {f(n)/g(n)} R > 0 then f(n) (g(n))

 R → set of non negative real numbers

6. If limn→ {f(n)/g(n)} = 0 then f(n) O(g(n)) but f(n) (g(n)

7. If limn→ {f(n)/g(n)} = then f(n) (g(n)) but f(n) (g(n)

19

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Recurrence Equations

20

Periyar Govt. Arts College

Cuddalore

Recurrence equations can be classified into

• Homogeneous recurrence equations

• Inhomogeneous recurrence equations

Suppose T(n) is the time complexity of an algorithm for the input size n.

Assume that T(n) is recursively defined as

 T(n) = b1T(n-1) + b2T(n-2) + …… + bkT(n-k)

 a0T(n) + a1T(n-1) + …….. + akT(n-k) = 0

Let us denote T(i) as xi

 a0x
n +a1x

n-1 + ……… + akx
n-k = 0

which is a homogeneous recurrence equation.

 a0x
k + a1x

k-1 + …….. + ak = 0, n=k

will have k roots. Let the roots be r1, r2, ….. rk.

They may or may not be same.

Dr. R. Bhuvaneswari

Homogeneous Recurrence Equations

21

Periyar Govt. Arts College

Cuddalore

Solving homogeneous recurrence equation

Case (i): All roots are distinct

 eg. x2-5x+6 = 0

 (x-3)(x-2) = 0 => x = 3 and 2

General solution is T(n) = c13
n +c22

n

Case (ii): Suppose some of p roots are equal and the remaining are

distinct.

 eg. (x-2)3(x-3) = 0 => x = 2,2,2,3

General solution is T(n) = C12
n + C2n2n + C3n

22n + C43
n

Dr. R. Bhuvaneswari

Inhomogeneous Recurrence Equations

22

Periyar Govt. Arts College

Cuddalore

A linear non-homogenous recurrence relation with constant

coefficients is a recurrence relation of the form

 an = c1an-1 + c2an-2 + … + ckan-k+ f(n)

where c1, c2, …, ck are real numbers, and f(n) is a function

depending only on n.

The recurrence relation

 an = c1an-1 + c2an-2 + … + ckan-k,

is called the associated homogeneous recurrence relation.

This recurrence includes k initial conditions.

a0 = C0, a1 = C1 … ak = Ck

Dr. R. Bhuvaneswari

Inhomogeneous Recurrence Equations

23

Periyar Govt. Arts College

Cuddalore

Case (i): Solve the recurrence equation

 T(n) – 2T(n-1) = 1 subject to T(0) = 0

Proof: The characteristic equation is

(x-2)(x-1)=0. Therefore, the roots are 2 and 1.

Now, the general solution is

 T(n) = c11
n + c22

n

Since T(0) = 0, from the given equation T(1)

will be 1.

Thus, from the general solution we get c1 = -1

and c2 = 1.

So,

 T(n) = 2n – 1 = (2n)

n = 0, T(0) = c1 + c2

ie., c1+ c2 = 0 ------- 1

n =1, T(1) = c1 + 2c2

ie., c1 + 2c2 = 1 ------- 2

from 1, c1 = -c2

substituting in 2,

-c2 + 2c2 = 1 → c2 = 1

from 1, c2 = -c1

substituting in 2,

c1 +2(-c1) = 1 → c1 = -1

Dr. R. Bhuvaneswari

Inhomogeneous Recurrence Equations

24

Periyar Govt. Arts College

Cuddalore

Case (ii): Solve the recurrence equation

 T(n) = 2T(n-1) + n2n + n2

Proof: The characteristic equation is (x-2)(x-2)2(x-1)3 = 0. That is

(x-2)3(x-1)3 = 0. Therefore, the roots are 2, 2, 2, 1, 1 and 1. Now, the

general solution is

 T(n) = c12
n + c2n2n + c3n

22n+ c41
n + c5n1n + c6n

21n

Hence, T(n) = O(n22n)

Dr. R. Bhuvaneswari

Analysis of linear search

25

Periyar Govt. Arts College

Cuddalore

• Algorithms are analyzed to get best-case, worst-case and average-

case.

• Each problem is defined on a certain domain

 eg. Algorithm to multiply two integers. In this case, the domain

of the problem is a set of integers.

• From the domain, we can derive an instance of the problem.

 Any two integers may be an instance to the above problem.

• So, when an algorithm is analyzed, it is necessary that the analyzed

value is satisfiable for all instances of the domain.

• Let Dn be the domain of a problem, where n be the size of the input.

• Let I Dn be an instance of the problem taken from the domain Dn.

• T(I) be the computation time of the algorithm for the instance I Dn

Dr. R. Bhuvaneswari

Analysis of linear search

26

Periyar Govt. Arts College

Cuddalore

Best-case analysis:

This gives the minimum computed time of the algorithm with respect to

all instances from the respective domain.

 B(n) = min{T(I) | I Dn}

Worst-case analysis:

This gives the maximum computation time of the algorithm with respect

to all instances from the respective domain.

 W(n) = max{T(I) | I Dn}

Average-case analysis:

where p(I) is the average probability with respect to the instance I.

Dr. R. Bhuvaneswari

Analysis of linear search

27

Periyar Govt. Arts College

Cuddalore

int linearsearch(char A[], int size, char ch)

{

 for (int i=0; i<size; i++)

 {

 if (A[i] == ch)

 return(i);

 }

 return(-1);

}

Location of the
element

Number of
comparisons required

0 1

1 2

2 3

.

.
.
.

n-1 n

not in the array n

Dr. R. Bhuvaneswari

Analysis of linear search

28

Periyar Govt. Arts College

Cuddalore

B(n) = min{1,2,……, n} = 1

 = O(1)

W(n) = max{1, 2, ……., n} = n

 = O(n)

Let k be the probability of x being in the array.

Successful search = 1+2+3+….+n = n(n+1)/2

Probability of unsuccessful search = 1 – k

A(n) = k * (n+1)/2 + (1-k) * n, where n → number of unsuccessful search

Suppose x is in the array, then k = 1. Therefore,

A(n) = (n+1)/2 = O(n)

Average =
𝑛(𝑛+1)/2

𝑛
 =

𝑛+1

2

