
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - III

1

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Dynamic Programming

Syllabus

UNIT-III

Dynamic Programming: General Method – Multistage Graphs –

All-Pair shortest paths –Optimal binary search trees – 0/1 Knapsack

– Travelling salesperson problem.

Text Book:

Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms C++, Second Edition, Universities Press,

2007. (For Units II to V)

2

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Dynamic Programming

General Method:

• It is an algorithm design method that can be used when the solution to

a problem can be viewed as a sequence of decisions.

• It obtains the solution using “Principle of Optimality”.

• It states that “ In an optimal sequence of decisions or choices, each

subsequence must also be optimal”, ie., whatever the initial state and

decision are, the remaining decisions must constitute an optimal

decision sequence.

• The difference between the greedy method and dynamic programming

is that in the greedy method only one decision sequence is ever

generated.

• In dynamic programming, many decision sequences may be generated.

• Sequences containing suboptimal subsequences cannot be optimal and

so will not be generated.

3

Dr. R. Bhuvaneswari

Multistage Graphs

4

Periyar Govt. Arts College

Cuddalore

• A multistage graph G = (V, E) is a directed graph in which the vertices

are partitioned into k 2 disjoint sets Vi, 1 i k.

• If u, v is an edge in E, then u Vi and v Vi+1.

• The sets V1 and Vk are such that |V1| = |Vk| = 1.

• The vertex s is the source and the t the sink (destination).

• The multistage graph problem is to find a minimum cost path from s

to t.

• The cost of s to t is the sum of the cost of the edges on the path.

• The multistage graph problem can be solved in 2 ways.

Forward method

Backward method

Dr. R. Bhuvaneswari

Multistage Graphs

Forward Approach

• In the forward approach, the cost of each and every node is found

starting from the k stage to the 1st stage.

• The minimum cost path from the source to destination is found ie.,

stage 1 to stage k.

• For forward approach,

 Cost(i ,j) = min{c(j, l) + cost(i+1, l)}

 lVi+1

 j, lE

 where i is the level number.

• Time complexity: O(V+E)

5

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Multistage Graphs

6

Periyar Govt. Arts College

Cuddalore

V1 V2 V3 V4 V5

Dr. R. Bhuvaneswari

Minimum cost estimation – Forward Approach

7

Periyar Govt. Arts College

Cuddalore

Min. Cost

cost(5,12) 0 0

cost(4,9) min{c(9,12)+cost(5,12)} = {4 + 0} 4

cost(4,10) min{c(10,12)+cost(5,12)} = {2 + 0} 2

cost(4,11) min{c(11,12)+cost(5,12)} = {5+ 0} 5

cost(3,6) min{c(6,9)+cost(4,9), c(6,10)+cost(4,10)}
= min{6+ 4, 5+2}

7

cost(3,7) min{c(7,9)+cost(4,9), c(7,10)+cost(4,10)}
= min{4+4, 3+2}

5

cost(3,8) min{c(8,10)+cost(4,10), c(8,11)+cost(4,11)}
= min{5+2, 6+5}

7

Cost(i ,j) = min{c(j, l) + cost(i+1, l)}

 lVi+1

 j, lE

Dr. R. Bhuvaneswari

Minimum cost estimation – Forward Approach

8

Periyar Govt. Arts College

Cuddalore

Min. Cost

cost(2,2) min{c(2,6)+cost(3,6), c(2,7)+cost(3,7),
 c(2,8)+cost(3,8)}
= min{4+7, 2+5, 1+7}

7

cost(2,3) min{c(3,6)+cost(3,6), c(3,7)+cost(3,7)}
= min{2+7, 7+5}

9

cost(2,4) min{c(4,8)+cost(3,8)}
= min{11+7}

18

cost(2,5) min{c(5,7)+cost(3,7), c(5,8)+cost(3,8)}
= min{11+5, 8+7}

15

cost(1,1) min{c(1,2)+cost(2,2), c(1,3)+cost(2,3),
 c(1,4)+cost(2,4), c(1,5)+cost(2,5)} =
min{9+7, 7+9, 3+18, 2+15}

16

1 2 7 10 12
1 3 6 10 12

Dr. R. Bhuvaneswari

Multistage Graphs

Algorithm FGraph(G, k, n, p)

//p[1:k] is a minimum cost path

{

 cost[n] = 0.0;

 for j = n-1 to 1 step -1 do

 {

 Let r be a vertex such that j, r is an edge of G and c[j, r]+cost[r] is

minimum;

 cost[j] = c[j, r] + cost[r];

 d[j] = r;

 }

 p[1] = 1; p[k] = n;

 for j = 2 to k-1 do

 p[j] = d[p[j-1]];

}

9

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Backward Approach

• In the backward approach, the cost of each and every node is found

starting from the 1st stage to the kth stage.

• The minimum cost path from the source to destination is found ie., stage

k to stage 1.

• For backward approach,

 bcost(i, j) = min{bcost(i-1, l) + c(l, j)}

 lVi-1

 l, jE

 where i is the level number.

10

Periyar Govt. Arts College

Cuddalore

Multistage Graphs

Dr. R. Bhuvaneswari 11

Periyar Govt. Arts College

Cuddalore

V1 V2 V3 V4 V5

Multistage Graphs

Dr. R. Bhuvaneswari 12

Periyar Govt. Arts College

Cuddalore

Min. Cost

bcost(1,1) 0 0

bcost(2,2) min{bcost(1,1)+c(1,2)} =min{0+9} 9

bcost(2,3) min{bcost(1,1)+c(1,3)} =min{0+7} 7

bcost(2,4) min{bcost(1,1)+c(1,4)} =min{0+3} 3

bcost(2,5) min{bcost(1,1)+c(1,5)} =min{0+2} 2

bcost(3,6) min{bcost(2,2)+c(2,6),bcost(2,3)+c(3,6)}
= min{9+4,7+2}

9

bcost(3,7) min{bcost(2,2)+c(2,7),bcost(2,3)+c(3,7),
 bcost(2,5)+c(5,7)}
= min{9+2,7+7,2+11}

11

bcost(i, j) = min{bcost(i-1, l) + c(l, j)}

 lVi-1

 l, jE

Minimum cost estimation – Backward Approach

Dr. R. Bhuvaneswari 13

Periyar Govt. Arts College

Cuddalore

Min. Cost

bcost(3,8) min{bcost(2,2)+c(2,8),bcost(2,4)+c(4,8),
 bcost(2,5)+c(5,8)}
= min{9+1,3+11,2+8}

10

bcost(4,9) min{bcost(3,6)+c(6,9),Bcost(3,7)+c(7,9)}
= min{9+6,11+4}

15

bcost(4,10) min{bcost(3,6)+c(6,10),bcost(3,7)+c(7,10),
 bcost(3,8)+c(8,10)}
= min{9+5,11+3,10+5}

14

bcost(4,11) min{bcost(3,8)+c(8,11)} = min{10+6} 16

Bcost(5,12) min{bcost(4,9)+c(9,12),bcost(4,10)+c(10,12),
 bcost(4,11)+c(11,12)}
= min{15+4,14+2,16+5}

16

12 10 7 2 1 1 2 7 10 12
12 10 6 3 1 1 3 6 10 12

Minimum cost estimation – Backward Approach

Dr. R. Bhuvaneswari 14

Periyar Govt. Arts College

Cuddalore

Algorithm BGraph(G, k, n, p)

{

 bcost[1] = 0.0;

 for j = 2 to n do

 {

 Let r be such that r, j is an edge of G and bcost[r] + c[r, j] is minimum;

 bcost[j] = bcost[r] + c[r, j];

 d[j] = r;

 }

 p[1] = 1; p[k] = n;

 for j = k-1 to 2 step -1 do

 p[j] = d[p[j+1]];

}

Multistage Graphs

Dr. R. Bhuvaneswari

All pair shortest paths

15

Periyar Govt. Arts College

Cuddalore

• All pairs shortest path problem is the determination of the shortest graph

distances between every pair of vertices in a given directed graph G.

• That is, for every pair of vertices (i, j), we are to find a shortest path from

i to j as well as from j to i. These two paths are the same when G is

undirected.

• Let G = (V, E) be a directed graph with n vertices.

• Let cost be a cost adjacency matrix for G such that cost(i, i) = 0, 1 i n.

• Cost(i, j) is the length of edge i, j if i, j E(G) and cost(i, j) = if i j

and i, j E(G).

• All pair shortest path problem is to determine a matrix A such that A(i, j)

is the length of a shortest path from i to j.

• Since each application of this procedure requires O(n2) time, the matrix A

can be obtained in O(n3) time.

Dr. R. Bhuvaneswari

All pair shortest paths

16

• The shortest i to j path in G, i ≠ j originates at vertex i and goes through

some intermediate vertices and terminates at vertex j.

• If k is an intermediate vertex on this shortest path, then the subpaths from

i to k and from k to j must be shortest paths from i to k and k to j,

respectively.

• Otherwise, the i to j path is not of minimum length.

• So, the principle of optimality holds.

• Let Ak(i, j) represent the length of a shortest path from i to j going through

no vertex of index greater than k, we obtain:

• Time complexity of this algorithm is O(n3)

Periyar Govt. Arts College

Cuddalore

𝑨 𝒊, 𝒋 = 𝐦𝐢𝐧
𝟏≤𝒌≤𝒏

{𝑨𝒌−𝟏 𝒊, 𝒌 + 𝑨𝒌−𝟏 𝒌, 𝒋 , 𝒄𝒐𝒔𝒕(𝒊, 𝒋)}

Dr. R. Bhuvaneswari

All pair shortest paths

17

Periyar Govt. Arts College

Cuddalore

1 2

3

6

4

2
11

3

Algorithm AllPaths(cost, A, n)

{

 for i =1 to n do

 {

 for j = 1 to n do

 A[i, j] = cost[i, j];

 }

 for k = 1 to n do

 {

 for j = 1 to n do

 {

 for j = 1 to n do

 A[i, j] = min{A[i, j], A[i, k]+A[k, j]};

 }

 }

}

1->3 = 11

1->2->3 = 6

2->1 = 6

2->3->1 = 5

Dr. R. Bhuvaneswari

All pair shortest paths

18

Periyar Govt. Arts College

Cuddalore

Solve the problem for k = 1, 2, 3

Cost adjacency matrix
A0 1 2 3

1 0 4 11

2 6 0 2

3 3 0

Solving the

equation for, k = 1

Solving the

equation for, k = 2

Solving the

equation for, k = 3

A1 1 2 3

1 0 4 11

2 6 0 2

3 3 7 0

A2 1 2 3

1 0 4 6

2 6 0 2

3 3 7 0

A3 1 2 3

1 0 4 6

2 5 0 2

3 3 7 0

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

19

Periyar Govt. Arts College

Cuddalore

• A Binary Search Tree (BST) is a tree in which all the nodes follow the

below mentioned properties :

 The value of the key of the left sub-tree is less than the value of its

parent (root) node's key.

 The value of the key of the right sub-tree is greater than or equal to

the value of its parent (root) node's key.

• An optimal binary search tree (OBST) is a binary search tree which

provides the smallest possible search time.

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

20

Periyar Govt. Arts College

Cuddalore

• The problem is to construct an optimal binary search tree (in terms of search

time) for a set of integer keys, given the frequencies with which each key

will be accessed.

• As there are three different keys, we can get a total of 5 various BSTs by

changing order of the keys. ie., 2nCn/(n+1) number of tree can be generated.

Keys 20 30 40

Frequencies 2 1 6

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

21

Periyar Govt. Arts College

Cuddalore

• The cost is computed by multiplying the each node’s frequency with the

level of tree(Here we are assuming that the tree starts from level 1) and

then add them to compute the overall cost of BST.

• The above example, the 4th BST has the least cost among all, so it is the

Optimal Binary Search Tree for the given data.

• If the number of nodes are less we can find optimal BST by checking all

possible arrangements, but if the nodes are greater than 3 like 4,5,6….. then

respectively 14,42,132….. , different BST’s are possible so by checking all

arrangements to find Optimal Cost may lead to extra overhead.

• So Dynamic Programming approach can be used to find the Optimal

Binary Search Tree.

• The search time can be improved in Optimal Cost Binary Search Tree,

placing the most frequently used data in the root and closer to the root

element, while placing the least frequently used data near leaves and in

leaves.

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

22

Periyar Govt. Arts College

Cuddalore

• It has n keys (representation
k1,k2,…,kn) in sorted order (so that
k1<k2<…<kn), and we build a binary
search tree from these keys.

• For each ki ,we have a probability pi
that a search will be for ki.

• In contrast, some searches may be for
values not in ki, and so we also have
n+1 “dummy keys” d0,d1,…,dn
representating not in ki.

• In particular, d0 represents all values
less than k1, and dn represents all
values greater than kn, and for
i=1,2,…,n-1, the dummy key di
represents all values between ki and
ki+1.

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

23

Periyar Govt. Arts College

Cuddalore

• The dummy keys are leaves (external nodes), and the data keys mean

internal nodes.

• For n internal nodes n+1 external nodes will be present.

• The terminal node that is the left successor of k1 can be interpreted as

representing all key values that are not stored and are less than k1.

Similarly, the terminal node that is the right successor of kn, represents all

key values not stored in the tree that are greater than kn.

Using Dynamic Approach

Let pi be the probability of successful search and qj be the probability of

unsuccessful search.

𝒄 𝒊, 𝒋 = 𝐦𝐢𝐧
𝟏 <𝒌 ≤𝒋

 𝒄 𝒊, 𝒌 − 𝟏 + 𝒄 𝒌, 𝒋 + 𝒘[𝒊, 𝒋]

𝐰 𝐢, 𝐣 = 𝐰 𝐢, 𝐣 − 𝟏 + 𝐩𝐣 + 𝐪𝐣

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

24

Periyar Govt. Arts College

Cuddalore

Example:

Keys = {10, 20, 30, 0}

p(1:4) = {3, 3, 1, 1}

q(0:4) = {2, 3,1, 1, 1}

Initially, w(i, i) = q(i); c(i, i) = 0;

r(i, i) = 0

W[0,1] = w[0,0]+p1+q1=2+6=8

W[1,2] = w[1,1]+p2+q2=3+3+1=7

W[2,3] = w[2,2]+p3+q3=1+1+1=3

W[3,4] = w[3,3]+p4+q4 =1+1+1=3

W[0,2] = w[0,1]+p2+q2

W[1,3] = w[1,2]+p3+q3

W[2,4] = w[2,3]+p4+q4

W[0,3] = w[0,2]+p3+q3

W[1,4] = w[1,3]+p4+q4

W[0,4] = w[0,3]+p4+q4

j-i =0 w00 =2

c00 =0

r00 =0

w11=3

c11 =0

r11 =0

w22=1

c22 =0

r22 =0

w33 =1

c33 =0

r33=0

w44=1

c44 =0

r44 =0

j-i=1

w01=8

c01 =8

r01 =1

w12 =7

c12 =7

r12 =2

w23 =3

c23 =3

r23 =3

w34 =3

c34 =3

r34=4

j-i=2

w02=12

c02=19

r02 =1

w13 =9

c13=12

r13=2

w24=5

c24 =8

r24 =3

j-i=3 w03=14

c03=25

r03 =2

w14=11

c14=19

r14 =2

j-i=4 w04 =16

c04 =32

r04 =2

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

25

Periyar Govt. Arts College

Cuddalore

c[0,1] = min{c[0,0]+c[1,1]}+w[0,1] = 0+0+8=8

 0<k1

c[1,2] = min{c[1,1]+c[2,2]}+w[1,2]=0+0+7=7

 1<k2

c[2,3] =min{c[2,2]+c[3,3]}+w[2,3]=0+0+3=3

 2<k3

c[3,4]=min{c[3,3]+c[4,4]}+w[3,4]=0+0+3=3

 3<k4

c[0,2]=min{c[0,0]+c[1,2], c[0,1]+c[2,2]}+w[0,2]

 0<k2

 =min{0+7,8+0}+12=19

c[1,3]=min{c[1,1]+c[2,3],c[1,2]+c[3,3]}+w[1,3]

 1<k3

 =min{0+3,7+0}+9 = 12

c[2,4]=min{c[2,2]+c[3,4],c[2,3]+c[4,4]}+w[2,4]

 2<k4

 =min{0+3,3+0}+5=8

Dr. R. Bhuvaneswari

Optimal Binary Search Trees

26

Periyar Govt. Arts College

Cuddalore

c[0,3]=min{c[0,0]+c[1,3], c[0,1]+c[2,3], c[0,2]+c[3,3]}+w[0,3]

 0<k3

 =min{0+12,8+3,19+0}+14 = 25

c[1,4] = min{c[1,1]+c[2,4], c[1,2]+c[3,4], c[1,3]+c[4,4]}+w[1,4]

 1<k4

 = min{0+8,7+3,12+0}+11 = 19

c[0,4] = min{c[0,0]+c[1,4], c[0,1]+c[2,4], c[0,2]+c[3,4], c[0,3]+c[4,4]}+w[0,4]

 0<k4

 =min{0+19,8+8,19+3,25+0}+16 = 32

The Optimal Binary Search Tree:

The algorithm requires O (n3) time

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

27

Periyar Govt. Arts College

Cuddalore

• Given n objects and a knapsack or bag.

• wi → weight of object i.

• m → knapsack capacity.

• As the name suggests, objects are indivisible in this method. No

fractional objects can be taken. An object can either be taken completely

or left completely.

• Objective is to fill the knapsack that maximizes the total profit earned.

• Problem can be stated as

maximize pi

1 ≤ i ≤n

xi

subject to wixi ≤ m

1≤ i ≤n

xi = 0 or 1, 1 ≤ i ≤ n

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

28

Periyar Govt. Arts College

Cuddalore

0/1 knapsack problem is solved using dynamic programming in the

following steps-

• Draw a table say ‘V’ with (n+1) number of rows and (w+1) number of

columns.

• Fill all the boxes of 0th row and 0th column with zeroes.

• Start filling the table row wise top to bottom from left to right.

• Use the following formula:

 V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]}

• value of the last box represents the maximum possible value that can be

put into the knapsack.

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

29

Periyar Govt. Arts College

Cuddalore

• To identify the items that must be put into the knapsack to obtain the

maximum profit,

 Consider the last column of the table.

 Start scanning the entries from bottom to top.

 On encountering an entry whose value is not same as the value

stored in the entry immediately above it, mark the row label of that

entry.

 After all the entries are scanned, the marked labels represent the

items that must be put into the knapsack.

• O(nw) time is taken to solve 0/1 knapsack problem using dynamic

programming.

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

30

Periyar Govt. Arts College

Cuddalore

Pi = {1, 2, 5, 6}

wi = (2, 3, 4, 5}

m = 8, n = 4

V[i ,W] = max{V[i-1 ,W] , V[i-1, W – w[i]] + p[i]}

V[1,1] = max{V[0,1], V[0,1-2]+1} = max{0, -} = 0

V[1,2] = max{V[0,2], V[0,2-2]+1} = max{0, 0+1} = 1

V[1,3] = max{V[0,3], V[0,3-2]+1} = max{0,0+1} = 1

V[1,4] = max{V[0,4], V[0,4-2]+1} = max{0, 0+1} = 1

V[1,5] = max{V[0,5], V[0,5-2]+1} = max{0, 0+1} = 1

V[1,6] = max{V[0,6], V[0,6-2]+1} = max{0, 0+1} = 1

V[1,7] = max{V[0,7], V[0,7-2]+1} = max{0, 0+1} = 1

V[1,8] = max{V[0,8], V[0,8-2]+1} = max{0, 0+1} = 1

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

31

Periyar Govt. Arts College

Cuddalore

V[2,1] = max{V[1,1],V[1,1-3]+2} = max{0, -} = 0

V[2,2] = max{V[1,2],V[1,2-3]+2} = max{1, -} = 1

V[2,3] = max{V[1,3],V[1,3-3]+2} = max{1, 0+2} = 2

V[2,4] = max{V[1,4],V[1,4-3]+2} = max{1, 0+2} = 2

V[2,5] = max{V[1,5],V[1,5-3]+2} = max{1, 1+2} = 3

V[2,6] = max{V[1,6],V[1,6-3]+2} = max{1, 1+2} = 3

V[2,7] = max{V[1,7],V[1,7-3]+2} = max{1, 1+2} = 3

V[2,8] = max{V[1,8],V[1,8-3]+2} = max{1, 1+2} = 3

V[3,1] = max{V[2,1],V[2,1-4]+5} = max{0, -} = 0

V[3,2] = max{V[2,2],V[2,2-4]+5} = max{1, -} = 1

V[3,3] = max{V[2,3],V[2,3-4]+5} = max{2, -} = 2

V[3,4] = max{V[2,4],V[2,4-4]+5} = max{2, 0+5} = 5

V[3,5] = max{V[2,5],V[2,5-4]+5} = max{2, 0+5} = 5

V[3,6] = max{V[2,6],V[2,6-4]+5} = max{2, 1+5} = 6

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

32

Periyar Govt. Arts College

Cuddalore

V[3,7] = max{V[2,7],V[2,7-4]+5} = max{2, 2+5} = 7

V[3,8] = max{V[2,8],V[2,8-4]+5} = max{2, 2+5} = 7

V[4,1] = max{V[3,1],V[3,1-5]+6} = max{0, -} = 0

V[4,2] = max{V[3,2],V[3,2-5]+6} = max{1, -} = 1

V[4,3] = max{V[3,3],V[3,3-5]+6} = max{2, -} = 2

V[4,4] = max{V[3,4],V[3,4-5]+6} = max{5, -} = 5

V[4,5] = max{V[3,5],V[3,5-5]+6} = max{5, 0+6} = 6

V[4,6] = max{V[3,6],V[3,6-5]+6} = max{6, 0+6} = 6

V[4,7] = max{V[3,7],V[3,7-5]+6} = max{7, 1+6} = 7

V[4,8] = max{V[3,8],V[3,8-5]+6} = max{7, 2+6} = 8

x1 = 0, x2 = 1, x3 = 0, x4 = 1

Dr. R. Bhuvaneswari

0/1 Knapsack Problem

33

Periyar Govt. Arts College

Cuddalore

for (i = 0; i n; i++)

{

 for(w = 0; w m; w++)

 {

 if(i==0 || w==0)

 k[i][w] = 0;

 else if(wt[i] w)

 k[i][w] = max(p[i]+k[i-1][w-wt[i], k[i-1][w]);

 else

 k[i][w] = k[i-1][w];

 }

}

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

34

Periyar Govt. Arts College

Cuddalore

• The traveling salesperson problem is to find a tour of minimum cost.

• Let G = (V, E) be a directed graph with edge cost Cij = if i, j E

• Let V = n and assume n > 1

• A tour G is a directed simple cycle that includes every vertex in V.

• The cost of a tour is the sum of the cost of the edges on the tour.

• Let g(i, S) be the length of a shortest path starting at vertex i, going

through all vertices in S and terminating at vertex 1.

• The function g(1, V-{1}) is the length of an optimal salesperson tour.

𝑔 1, 𝑉 − 1 = min
2 ≤𝑘 ≤𝑛

 𝑐1𝑘 + 𝑔 𝑘, 𝑉 − 1, 𝑘 − − − − − 1

𝑔 𝑖, 𝑆 = min
𝑗 ∈𝑆

 𝑐𝑖𝑗 + 𝑔 𝑗, 𝑆 − 𝑗 − − − − − 2

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

35

Periyar Govt. Arts College

Cuddalore

g(i,) = Ci1, 1 i n.

S =

g(2,) = c21 = 5

g(3,) = c31 = 6

g(4,) = c41 = 8

Using equation 2, we obtain

S = 1

g(2,{3}) = c23 + g(3,) = 9+6 = 15

g(2,{4}) = c24 + g(4,) = 10+8 = 18

g(3,{2}) = c32 +g(2,) = 13+5 = 18

g(3,{4}) = c34+g(4,) = 12+8 = 20

g(4,{2}) = c42+g(2,) = 8+5 = 13

g(4,{3}) = c43+g(3,) = 9+6 = 15

1 2 3 4
1 0 10 15 20
2 5 0 9 10
3 6 13 0 12
4 8 8 9 0

Dr. R. Bhuvaneswari

Traveling Salesperson Problem

36

Periyar Govt. Arts College

Cuddalore

S = 2

g(2,{3,4}) = min{c23 +g(3,{4}), c24 + g(4,{3})}

 = min{9+20, 10+15} = 25

g(3,{2,4}) = min{c32 + g(2,{4}), c34 + g(4,{2})}

 = min{13+18, 12+13} = 25

g(4,{2,3}) = min{c42 + g(2,{3}), c43 + g(3,{2})}

 = min{8+15, 9+18} = 23

Using equation 1, we obtain

g(1,{2,3,4}) = min{c12+g(2,{3,4}), c13+g(3,{2,4}), c14+g(4,{2,3})}

 = min{10+25, 15+25, 20+23} = 35

 The optimal tour is

 1->2->4->3->1

O(2nn2) time is taken to solve the traveling salesperson problem

