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Backtracking: General Method – 8 Queens problem – sum of 

subsets – graph coloring – Hamiltonian problem – knapsack 

problem.  
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Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 

Computer Algorithms C++, Second Edition, Universities Press, 

2007. (For Units II to V)  
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Backtracking 

• Backtracking is technique used to solve problems with a large search space, 

by systematically trying and eliminating  possibilities. 

• The desired solution is expressed as an n-tuple (x1, …, xn), where xi are 

chosen from some finite set Si. 

• The problem to be solved finds a vector that maximizes (or minimizes) a 

criterion function P(x1, …, xn).  

• Suppose mi is the size of  set Si. Then there are m = m1, m2, …., mn n-tuples 

are possible candidates for satisfying the function P. 

• If it is realized that the partial vector (x1, x2, …, xn) can in no way lead to an 

optimal solution, then mi+1, …, mn possible test vectors can be ignored 

entirely. 

• Problems solved through backtracking requires that all the solutions satisfy 

a complex set of constraints. 

• Constraints are divided into two categories: 

 Implicit constraints 

 Explicit constrains 
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Tree organization of 4-queens solution space 

Explicit constraints are rules 

that restrict each xi to take on 

values only from a given set.  

Implicit constraints are rules 

that determine which of the 

tuples in the solution space of  

I satisfy the criterion function. 

Eg. 4-queens problem 

Explicit constraints – each 

queen on different row. 

Implicit constraints – all 

queens must be on different 

columns and no two queens 

can be on the same diagonal. 
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• Tuples that satisfy the explicit constraints define a solution space.  

• The solution space can be organized into a tree.  

• All paths from the root to other nodes define the state-space of the 

problem. 

• Live node is a node which has been generated and all of whose children 

are not yet been generated . 

• E-Node (Node being expanded) is the live node whose children are 

currently being generated . 

• Dead node is a node that is either not to be expanded further, or for which 

all of its children have been generated. 

• Bounding function will be used to kill live nodes without generating all 

their children. 
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Algorithm IBacktrack(n) 
{ 
  k=1; 
  while(k0) do 
  { 
    if(there remains an untired  
        x[k]  T(x[1], x[2], …, x[k-1]) and  
        Bk(x[1], …, x[k] is true) then 
    { 
       if(x[1] … x[k] is a path to an  
                              answer node) then 
  write (x[1:k]); 
          k=k+1; 
     } 
     else 
      k=k-1; 
  } 
} 

Algorithm Backtrack(k) 

{ 

  for(each x[k]  T(x[1], x[2], …, 

x[k-1]) do 

 { 

   if (Bk(x[1], …, x[k]  0) then 

  { 

    if (x[1], x[2], …, x[k]) is a path to 

an answer node) then 

           write(x[1:k]); 

    if(k<n) then Backtrack(k+1); 

   } 

 } 

} 



Dr. R. Bhuvaneswari 

8-Queens Problem 

7 

Periyar Govt. Arts College 

Cuddalore 

• n – queens are placed on a n x n chess board, which means that the 

chessboard has n rows and n columns and the n queens are placed on n x n 

chessboard such that no two queens are placed in the same row or in the 

same column or in same diagonal.  

• All solutions to the n – queen’s problem can be represented as n–tuples (x1, 

x2... xn) where xi is the column of the ith  row where ith queen is  placed. 

• xi’s will all be distinct since no two queens can be placed in the same 

column. 

• Consider queen at [4,2]. Diagonal to this queen are a[3,1] 

•  2 queens are placed at positions (i, j) and (k, l).  

• They are on the same diagonal only if   

  i-j = k-l   e.g. 1-1 = 2-2  

  or i+j = k+l   e.g 1+4= 2+3 

   i-k = j-l 

• Therefore 2 queens lie on the same diagonal if and only if j-l = i-k 

1,1 1,2 1,3 1,4 

2,1 2,2 2,3 2,4 

3,1 3,2 3,3 3,4 

4,1 4,2 4,3 4,4 
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Algorithm NQueens(k, n) 

{ 

  for i = 1 to n do 

  { 

    if Place(k,i) then 

   { 

       x[k] = i; 

       if (k=n) then 

            write(x[1:n]); 

       else 

             NQueens(k+1,n); 

    } 

  } 

} 

Algorithm Place(k,i) 

// Returns true if a queen can be placed in 

//kth row and ith column.  Otherwise it 

//returns false. x[] is a global array whose 

//first (k-1) values have been set. Abs(r) 

//returns the absolute value of n. 

{ 

  for j = 1 to k-1 do 

 { 

   if((x[j] = i)) or (abs(x[j]-i) = abs(j-k))) then 

 return false; 

  } 

  return true; 

} 
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• Sum of Subsets problem is to find subset of elements that are selected 

from a given set whose sum adds up to a given number m.  

• We are considering the set contains non-negative values. It is assumed 

that the input set is unique (no duplicates are presented). 

• Here backtracking approach is used for trying to select a valid subset. 

• When an item is not valid, backtracking is done to get the previous subset 

and add another element to get the solution. 

Finding all subsets of wi, whose sum is m. 

Ex. 1: 

n = 4, (w1, w2, w3, w4) = (11,13,24,7), m = 31 

Possible subsets are {11, 13, 7} and {24, 7} 

Ex. 2: 

n = 7, w = {5, 10, 12, 13, 15, 18}, m = 30 

Possible subsets are {5, 10, 15}, {5, 12, 13} and {12, 18} 
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The bounding functions used are 

 

 

 

 

 

Example:  

n = 3, m = 6, w = {2, 4, 6} 

 

The full space tree for n = 3 

contains 23 – 1 = 7 nodes  

from which call could be  

made (this excludes the  

leaf nodes). 
 

𝑩𝒌 𝒙𝟏, … , 𝒙𝒌 =  𝒕𝒓𝒖𝒆 𝒊𝒇𝒇  𝒘𝒊𝒙𝒊 +  𝒘𝒊  ≥ 𝒎

𝒏

𝒊=𝒌+𝟏

𝒌

𝒊=𝟏

 

        
𝒂𝒏𝒅  𝒘𝒊𝒙𝒊 +  𝒘𝒌+𝟏 ≤ 𝒎

𝒌

𝒊=𝟏

 

State space tree 
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Algorithm SumOfSubsets(s, k, r) 

// S = w[j]*x[j] and r = w[j]. w[j]’s are in non decreasing order. It is 

//assumed that w[1]  m and w[j]  m. 

{ 

   x[k] = 1; 

   if(s+w[k] = m) then write(x[1:k]); 

   else if(s+w[k]+w[k+1]  m) then  

 SumOfSubset(s+w[k],k+1,r-w[k]); 

   if((s+r-w[k]  m) and (s+w[k+1]  m) then 

   { 

       x[k]=0; 

       SumOfSubset(s,k+1,r-w[k]); 

   } 

} 
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Example:  n = 6, w[1:6] = {5,10,12,13,15,18}, m = 30 

Partial state space tree 
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• Let G be a graph and m be a given positive integer. 

• The graph coloring problem is to discover whether the nodes of the graph 

G can be colored in such a way, that no two adjacent nodes have the same 

color yet only m colors are used. 

• This graph coloring problem is also known as m-colorability decision 

problem. 

• The smallest number of colors required to color a graph G is referred to as 

the chromatic number of that graph.  

• As the objective is to minimize the number of colors the graph coloring 

problem is also known as m-colorability optimization problem. 

• Graph coloring problem is a NP Complete problem. 

• If d is the degree of the given graph, then it can be colored with d+1 

colors. 
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• A graph is said to be planar if and only if it can be drawn in a plane in 

such a way no two edges cross each other. 

 

 

 

 

 

 

 

• A special case is the 4 - colors problem for planar graphs. The problem 

is to color the region in a map in such a way that no two adjacent regions 

have the same color.  

• A map can be easily transformed into a graph.  

• Each region of the map becomes the node, and if two regions are 

adjacent, they are joined by an edge. 
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• For solving the graph coloring problem, we represent the graph by its 

adjacency matrix G[1:n, 1:n], where, G[i, j]= 1 if (i, j) is an edge of G, 

and G[i, j] = 0 otherwise. 

• The colors are represented by the integers 1, 2, ..., m and the solutions 

are given by the n-tuple (x1, x2, x3, ..., xn), where xi is the color of 

node i. 

• The total computing time of mcoloring is O(nmn). 
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1 2 3 4 

1 0 1 0 1 

2 1 0 1 0 

3 0 1 0 1 

4 1 0 1 0 

A 4-node graph and all possible 3-colorings 

Adjacency matrix 
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Algorithm NextValue(k) 

{ 

  repeat 

 { 

    x[k] = (x[k]+1)mod(m+1); 

    if(x[k]=0) then return; 

    for j =1 to n do 

   { 

     if((G[k,j]0) and (x[k] = x[j])) then    

            break; 

   } 

   if(j=n+1) then return; 

}until(false); 

} 

Graph Coloring 
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Algorithm mColoring(k) 

//The graph is represented by its 

//boolean adjacency matrix G[1:n,1:n]. 

{ 

  repeat 

 { 

    NextValue(k); 

    if(x[k]=0) then return; 

    if(k=n) then 

        write(x[1:n]); 

    else mColoring(k+1); 

  }until false; 

} 
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• Let G = (V, E) be a connected graph with n vertices. 

• A Hamiltonian cycle is a round trip path along n edges of G that visits 

every vertex once and returns to its starting position. 

• A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. 

1, 2, 8, 7,6, 5, 4, 3, 1 

A, B, C, E, D, A 

A, D, E, C, B, A 
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1 2 3 4 5 

1 0 1 1 0 1 

2 1 0 1 1 1 

3 1 1 0 1 0 

4 0 1 1 0 1 

5 1 1 0 1 0 

• The input for the Hamiltonian graph problem can be the directed or 
undirected graph. The Hamiltonian problem involves checking if the 
Hamiltonian cycle is present in a graph G or not.  

• While generating the state space tree following bounding functions are to be 
considered, which are as follows: 
 The ith vertex in the path must be adjacent to the (i-1)th vertex in any path. 
 The starting vertex and the (n-1)th vertex should be adjacent. 
 The ith vertex cannot be one of the first (i-1)th vertex in the path. 

State space tree Boolean adjacency matrix 
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Algorithm NextValue(k) 

{ 

  repeat 

 { 

   x[k] = (x[k]+1)mod(n+1); 

   if(x[k]=0) then return; 

   if(G[x[k-1],x[k]]0) then  

   {  

      for j =1 to k-1 do 

            if(x[j]=x[k]) then break; 

      if(j=k) then 

         if((k<n) or ((k=n) and G[x[n],x[1]]0))  then 

                 return; 

   } 

  }until(false); 

} 

Hamiltonian Cycles 
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Algorithm Hamiltonian(k) 

//The graph is stored as an 

//adjacency matrix G[1:n,1:n]. 

{ 

  repeat 

 { 

    NextValue(k); 

    if(x[k]=0) then return; 

    if(k=n) then 

        write(x[1:n]); 

    else Hamiltonian(k+1); 

  }until false; 

} 
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• Given n positive weights wi, n positive profits pi , and a positive number M 

which is the knapsack capacity, the 0/1 knapsack problem calls for choosing 

a subset of the weights such that 

 

 

 

 

 

 

• The solution space for this problem consists of the 2n distinct ways to assign 

zero or one values to the xi's. 

• Bounding function is needed to help kill some live nodes without actually 

expanding them. 

• A good bounding function for this problem is obtained by using an upper 

bound on the value of the best feasible solution obtainable by expanding the 

given live node and any of its descendants.  

maximize  pi

1 ≤ i ≤n

xi        

subject to  wixi  ≤ m  

1≤ i ≤n

  

xi = 0 or 1, 1 ≤ i ≤ n   
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• If this upper bound is not higher than the value of the best solution 

determined so far then that live node may be killed. 

• If at node Z the values of xi , 1  i  k have already been determined, then an 

upper bound for Z can be obtained by relaxing the requirement xi = 0 or 1 to 

0   xi  1 for k+1   i  n and use the greedy method to solve the relaxed 

problem. 

• Procedure Bound(p,w,k,M) determines an upper bound on the best solution 

obtainable by expanding any node Z at level k+1 of the state space tree. 
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Algorithm Bknap(k, cp, cw) 

// m is the size of the knapsack; n is the 

//number of weights and profits.  w[] and p[] 

//are the weights and profits p[i]/w[i]  
//p[i+1]/w[i+1]. fw is the final weight of 

//knapsack; fp is the final maximum profit. 

//x[k] = 0 if w[k] is not in the knapsack; else 

//x[k] = 1. 

{ 

  if(cw+w[k]  m) then 
  { 

     y[k]= 1; 

     if(k < n) then  

         Bknap(k+1, cp+p[k], cw+w[k]); 

     if((cp + p[k] > fp) and (k = n)) then 

    { 

         fp = cp + p[k]; fw = cw + w[k]; 

     for j =1 to k do x[j] = y[j]; 

   } 

 } 

 if (Bound(cp,cw,k)  fp) then 

{ 

    y[k] = 0; 

    if(k < n) then  

           Bknap(k+1, cp, cw); 

    if((cp > fp) and (k = n)) then 

   { 

          fp = cp; fw = cw; 

          for j = 1 to k do x[j] = y[j]; 

   } 

 } 

} 
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Algorithm Bound(cp, cw, k) 

//cp is the current profit total, cw is 

//the current weight total; k is the 

//index of the last removed item; and 

//m is the knapsack size. 

{ 

  b = cp; c = cw; 

  for i = k+1 to n do 

  { 

     c = c + w[i]; 

     if(c < m) then b = b + p[i]; 

     else return b+(1-(c-m)/w[i])*p[i]; 

  } 

  return b; 

} 


