
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - IV

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Backtracking

Syllabus

UNIT–IV

Backtracking: General Method – 8 Queens problem – sum of

subsets – graph coloring – Hamiltonian problem – knapsack

problem.

Text Book:

Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms C++, Second Edition, Universities Press,

2007. (For Units II to V)

2

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Backtracking

• Backtracking is technique used to solve problems with a large search space,

by systematically trying and eliminating possibilities.

• The desired solution is expressed as an n-tuple (x1, …, xn), where xi are

chosen from some finite set Si.

• The problem to be solved finds a vector that maximizes (or minimizes) a

criterion function P(x1, …, xn).

• Suppose mi is the size of set Si. Then there are m = m1, m2, …., mn n-tuples

are possible candidates for satisfying the function P.

• If it is realized that the partial vector (x1, x2, …, xn) can in no way lead to an

optimal solution, then mi+1, …, mn possible test vectors can be ignored

entirely.

• Problems solved through backtracking requires that all the solutions satisfy

a complex set of constraints.

• Constraints are divided into two categories:

 Implicit constraints

 Explicit constrains

3

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Backtracking

4

Tree organization of 4-queens solution space

Explicit constraints are rules

that restrict each xi to take on

values only from a given set.

Implicit constraints are rules

that determine which of the

tuples in the solution space of

I satisfy the criterion function.

Eg. 4-queens problem

Explicit constraints – each

queen on different row.

Implicit constraints – all

queens must be on different

columns and no two queens

can be on the same diagonal.

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Backtracking

5

• Tuples that satisfy the explicit constraints define a solution space.

• The solution space can be organized into a tree.

• All paths from the root to other nodes define the state-space of the

problem.

• Live node is a node which has been generated and all of whose children

are not yet been generated .

• E-Node (Node being expanded) is the live node whose children are

currently being generated .

• Dead node is a node that is either not to be expanded further, or for which

all of its children have been generated.

• Bounding function will be used to kill live nodes without generating all

their children.

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Backtracking

6

Algorithm IBacktrack(n)
{
 k=1;
 while(k0) do
 {
 if(there remains an untired
 x[k] T(x[1], x[2], …, x[k-1]) and
 Bk(x[1], …, x[k] is true) then
 {
 if(x[1] … x[k] is a path to an
 answer node) then
 write (x[1:k]);
 k=k+1;
 }
 else
 k=k-1;
 }
}

Algorithm Backtrack(k)

{

 for(each x[k] T(x[1], x[2], …,

x[k-1]) do

 {

 if (Bk(x[1], …, x[k] 0) then

 {

 if (x[1], x[2], …, x[k]) is a path to

an answer node) then

 write(x[1:k]);

 if(k<n) then Backtrack(k+1);

 }

 }

}

Dr. R. Bhuvaneswari

8-Queens Problem

7

Periyar Govt. Arts College

Cuddalore

• n – queens are placed on a n x n chess board, which means that the

chessboard has n rows and n columns and the n queens are placed on n x n

chessboard such that no two queens are placed in the same row or in the

same column or in same diagonal.

• All solutions to the n – queen’s problem can be represented as n–tuples (x1,

x2... xn) where xi is the column of the ith row where ith queen is placed.

• xi’s will all be distinct since no two queens can be placed in the same

column.

• Consider queen at [4,2]. Diagonal to this queen are a[3,1]

• 2 queens are placed at positions (i, j) and (k, l).

• They are on the same diagonal only if

 i-j = k-l e.g. 1-1 = 2-2

 or i+j = k+l e.g 1+4= 2+3

 i-k = j-l

• Therefore 2 queens lie on the same diagonal if and only if j-l = i-k

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Dr. R. Bhuvaneswari

8-Queens Problem

8

Periyar Govt. Arts College

Cuddalore

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Dr. R. Bhuvaneswari

8-Queens Problem

9

Periyar Govt. Arts College

Cuddalore

Algorithm NQueens(k, n)

{

 for i = 1 to n do

 {

 if Place(k,i) then

 {

 x[k] = i;

 if (k=n) then

 write(x[1:n]);

 else

 NQueens(k+1,n);

 }

 }

}

Algorithm Place(k,i)

// Returns true if a queen can be placed in

//kth row and ith column. Otherwise it

//returns false. x[] is a global array whose

//first (k-1) values have been set. Abs(r)

//returns the absolute value of n.

{

 for j = 1 to k-1 do

 {

 if((x[j] = i)) or (abs(x[j]-i) = abs(j-k))) then

 return false;

 }

 return true;

}

Dr. R. Bhuvaneswari

Sum of Subsets

10

Periyar Govt. Arts College

Cuddalore

• Sum of Subsets problem is to find subset of elements that are selected

from a given set whose sum adds up to a given number m.

• We are considering the set contains non-negative values. It is assumed

that the input set is unique (no duplicates are presented).

• Here backtracking approach is used for trying to select a valid subset.

• When an item is not valid, backtracking is done to get the previous subset

and add another element to get the solution.

Finding all subsets of wi, whose sum is m.

Ex. 1:

n = 4, (w1, w2, w3, w4) = (11,13,24,7), m = 31

Possible subsets are {11, 13, 7} and {24, 7}

Ex. 2:

n = 7, w = {5, 10, 12, 13, 15, 18}, m = 30

Possible subsets are {5, 10, 15}, {5, 12, 13} and {12, 18}

Dr. R. Bhuvaneswari

Sum of Subsets

11

Periyar Govt. Arts College

Cuddalore

The bounding functions used are

Example:

n = 3, m = 6, w = {2, 4, 6}

The full space tree for n = 3

contains 23 – 1 = 7 nodes

from which call could be

made (this excludes the

leaf nodes).

𝑩𝒌 𝒙𝟏, … , 𝒙𝒌 = 𝒕𝒓𝒖𝒆 𝒊𝒇𝒇 𝒘𝒊𝒙𝒊 + 𝒘𝒊 ≥ 𝒎

𝒏

𝒊=𝒌+𝟏

𝒌

𝒊=𝟏

𝒂𝒏𝒅 𝒘𝒊𝒙𝒊 + 𝒘𝒌+𝟏 ≤ 𝒎

𝒌

𝒊=𝟏

State space tree

Dr. R. Bhuvaneswari

Sum of Subsets

12

Periyar Govt. Arts College

Cuddalore

Algorithm SumOfSubsets(s, k, r)

// S = w[j]*x[j] and r = w[j]. w[j]’s are in non decreasing order. It is

//assumed that w[1] m and w[j] m.

{

 x[k] = 1;

 if(s+w[k] = m) then write(x[1:k]);

 else if(s+w[k]+w[k+1] m) then

 SumOfSubset(s+w[k],k+1,r-w[k]);

 if((s+r-w[k] m) and (s+w[k+1] m) then

 {

 x[k]=0;

 SumOfSubset(s,k+1,r-w[k]);

 }

}

Dr. R. Bhuvaneswari

Sum of Subsets

13

Periyar Govt. Arts College

Cuddalore

Example: n = 6, w[1:6] = {5,10,12,13,15,18}, m = 30

Partial state space tree

Dr. R. Bhuvaneswari

Graph Coloring

14

Periyar Govt. Arts College

Cuddalore

• Let G be a graph and m be a given positive integer.

• The graph coloring problem is to discover whether the nodes of the graph

G can be colored in such a way, that no two adjacent nodes have the same

color yet only m colors are used.

• This graph coloring problem is also known as m-colorability decision

problem.

• The smallest number of colors required to color a graph G is referred to as

the chromatic number of that graph.

• As the objective is to minimize the number of colors the graph coloring

problem is also known as m-colorability optimization problem.

• Graph coloring problem is a NP Complete problem.

• If d is the degree of the given graph, then it can be colored with d+1

colors.

Dr. R. Bhuvaneswari

Graph Coloring

15

Periyar Govt. Arts College

Cuddalore

• A graph is said to be planar if and only if it can be drawn in a plane in

such a way no two edges cross each other.

• A special case is the 4 - colors problem for planar graphs. The problem

is to color the region in a map in such a way that no two adjacent regions

have the same color.

• A map can be easily transformed into a graph.

• Each region of the map becomes the node, and if two regions are

adjacent, they are joined by an edge.

Dr. R. Bhuvaneswari

Graph Coloring

16

Periyar Govt. Arts College

Cuddalore

• For solving the graph coloring problem, we represent the graph by its

adjacency matrix G[1:n, 1:n], where, G[i, j]= 1 if (i, j) is an edge of G,

and G[i, j] = 0 otherwise.

• The colors are represented by the integers 1, 2, ..., m and the solutions

are given by the n-tuple (x1, x2, x3, ..., xn), where xi is the color of

node i.

• The total computing time of mcoloring is O(nmn).

Dr. R. Bhuvaneswari

Graph Coloring

17

Periyar Govt. Arts College

Cuddalore

1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

A 4-node graph and all possible 3-colorings

Adjacency matrix

Dr. R. Bhuvaneswari

Algorithm NextValue(k)

{

 repeat

 {

 x[k] = (x[k]+1)mod(m+1);

 if(x[k]=0) then return;

 for j =1 to n do

 {

 if((G[k,j]0) and (x[k] = x[j])) then

 break;

 }

 if(j=n+1) then return;

}until(false);

}

Graph Coloring

18

Periyar Govt. Arts College

Cuddalore

Algorithm mColoring(k)

//The graph is represented by its

//boolean adjacency matrix G[1:n,1:n].

{

 repeat

 {

 NextValue(k);

 if(x[k]=0) then return;

 if(k=n) then

 write(x[1:n]);

 else mColoring(k+1);

 }until false;

}

Dr. R. Bhuvaneswari

Hamiltonian Cycles

19

Periyar Govt. Arts College

Cuddalore

• Let G = (V, E) be a connected graph with n vertices.

• A Hamiltonian cycle is a round trip path along n edges of G that visits

every vertex once and returns to its starting position.

• A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

1, 2, 8, 7,6, 5, 4, 3, 1

A, B, C, E, D, A

A, D, E, C, B, A

Dr. R. Bhuvaneswari

Hamiltonian Cycles

20

Periyar Govt. Arts College

Cuddalore

1 2 3 4 5

1 0 1 1 0 1

2 1 0 1 1 1

3 1 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

• The input for the Hamiltonian graph problem can be the directed or
undirected graph. The Hamiltonian problem involves checking if the
Hamiltonian cycle is present in a graph G or not.

• While generating the state space tree following bounding functions are to be
considered, which are as follows:
 The ith vertex in the path must be adjacent to the (i-1)th vertex in any path.
 The starting vertex and the (n-1)th vertex should be adjacent.
 The ith vertex cannot be one of the first (i-1)th vertex in the path.

State space tree Boolean adjacency matrix

Dr. R. Bhuvaneswari

Algorithm NextValue(k)

{

 repeat

 {

 x[k] = (x[k]+1)mod(n+1);

 if(x[k]=0) then return;

 if(G[x[k-1],x[k]]0) then

 {

 for j =1 to k-1 do

 if(x[j]=x[k]) then break;

 if(j=k) then

 if((k<n) or ((k=n) and G[x[n],x[1]]0)) then

 return;

 }

 }until(false);

}

Hamiltonian Cycles

21

Periyar Govt. Arts College

Cuddalore

Algorithm Hamiltonian(k)

//The graph is stored as an

//adjacency matrix G[1:n,1:n].

{

 repeat

 {

 NextValue(k);

 if(x[k]=0) then return;

 if(k=n) then

 write(x[1:n]);

 else Hamiltonian(k+1);

 }until false;

}

Dr. R. Bhuvaneswari

Knapsack

22

Periyar Govt. Arts College

Cuddalore

• Given n positive weights wi, n positive profits pi , and a positive number M

which is the knapsack capacity, the 0/1 knapsack problem calls for choosing

a subset of the weights such that

• The solution space for this problem consists of the 2n distinct ways to assign

zero or one values to the xi's.

• Bounding function is needed to help kill some live nodes without actually

expanding them.

• A good bounding function for this problem is obtained by using an upper

bound on the value of the best feasible solution obtainable by expanding the

given live node and any of its descendants.

maximize pi

1 ≤ i ≤n

xi

subject to wixi ≤ m

1≤ i ≤n

xi = 0 or 1, 1 ≤ i ≤ n

Dr. R. Bhuvaneswari

Knapsack

23

Periyar Govt. Arts College

Cuddalore

• If this upper bound is not higher than the value of the best solution

determined so far then that live node may be killed.

• If at node Z the values of xi , 1 i k have already been determined, then an

upper bound for Z can be obtained by relaxing the requirement xi = 0 or 1 to

0 xi 1 for k+1 i n and use the greedy method to solve the relaxed

problem.

• Procedure Bound(p,w,k,M) determines an upper bound on the best solution

obtainable by expanding any node Z at level k+1 of the state space tree.

Dr. R. Bhuvaneswari

Knapsack

24

Periyar Govt. Arts College

Cuddalore

Algorithm Bknap(k, cp, cw)

// m is the size of the knapsack; n is the

//number of weights and profits. w[] and p[]

//are the weights and profits p[i]/w[i]
//p[i+1]/w[i+1]. fw is the final weight of

//knapsack; fp is the final maximum profit.

//x[k] = 0 if w[k] is not in the knapsack; else

//x[k] = 1.

{

 if(cw+w[k] m) then
 {

 y[k]= 1;

 if(k < n) then

 Bknap(k+1, cp+p[k], cw+w[k]);

 if((cp + p[k] > fp) and (k = n)) then

 {

 fp = cp + p[k]; fw = cw + w[k];

 for j =1 to k do x[j] = y[j];

 }

 }

 if (Bound(cp,cw,k) fp) then

{

 y[k] = 0;

 if(k < n) then

 Bknap(k+1, cp, cw);

 if((cp > fp) and (k = n)) then

 {

 fp = cp; fw = cw;

 for j = 1 to k do x[j] = y[j];

 }

 }

}

Dr. R. Bhuvaneswari

Knapsack

25

Periyar Govt. Arts College

Cuddalore

Algorithm Bound(cp, cw, k)

//cp is the current profit total, cw is

//the current weight total; k is the

//index of the last removed item; and

//m is the knapsack size.

{

 b = cp; c = cw;

 for i = k+1 to n do

 {

 c = c + w[i];

 if(c < m) then b = b + p[i];

 else return b+(1-(c-m)/w[i])*p[i];

 }

 return b;

}

