
UNIT V

JDBC – Introduction

What is JDBC?

JDBC stands for Java Database Connectivity, which is a standard Java API for
database-independent connectivity between the Java programming language and a wide range
of databases.

The JDBC library includes APIs for each of the tasks mentioned below that are commonly
associated with database usage.

 Making a connection to a database.

 Creating SQL or MySQL statements.

 Executing SQL or MySQL queries in the database.

 Viewing& Modifying the resulting records.

Fundamentally, JDBC is a specification that provides a complete set of interfaces that allows
for portable access to an underlying database. Java can be used to write different types of
executables, such as −

 Java Applications

 Java Applets

 Java Servlets

 Java ServerPages (JSPs)

 Enterprise JavaBeans (EJBs).

All of these different executables are able to use a JDBC driver to access a database, and take
advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to contain
database-independent code.

What is JDBC Driver?
JDBC drivers implement the defined interfaces in the JDBC API, for interacting with your
database server.

For example, using JDBC drivers enable you to open database connections and to interact
with it by sending SQL or database commands then receiving results with Java.

The Java.sql package that ships with JDK, contains various classes with their behaviours
defined and their actual implementaions are done in third-party drivers. Third party vendors
implements the java.sql.Driver interface in their database driver.

JDBC Drivers Types
JDBC driver implementations vary because of the wide variety of operating systems and
hardware platforms in which Java operates. Sun has divided the implementation types into
four categories, Types 1, 2, 3, and 4, which is explained below −

Type 1: JDBC-ODBC Bridge Driver
In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client

machine. Using ODBC, requires configuring on your system a Data Source Name (DSN) that
represents the target database.

When Java first came out, this was a useful driver because most databases only supported
ODBC access but now this type of driver is recommended only for experimental use or when
no other alternative is available.

JDBC Architecture
The JDBC API supports both two-tier and three-tier processing models for database access
but in general, JDBC Architecture consists of two layers −

 JDBC API: This provides the application-to-JDBCManager connection.

 JDBC Driver API: This supports the JDBCManager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source.
The driver manager is capable of supporting multiple concurrent drivers connected to
multiple heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with
respect to the JDBC drivers and the Java application –

Interface in Java

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract
methods in the Java interface, not method body. It is used to achieve abstraction and
multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It
cannot have a method body.

Developing JDBC Applications
This chapter provides information about developing JDBC applications for Sequel link
environments including:

 "JDBC 3.0 Support"

 "SQL Support"

 "Data Types and Isolation Levels"

 "Threading"

 "Using Scrollable Cursors"

 "Specifying Application IDs"

 "Error Handling"

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525416
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525416
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525416
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525530
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525530
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp539747
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp539747
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp539747
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp539747
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp539747
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp525623
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526076
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526076
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526076
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526150
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526150
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp526150
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp527579
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp527579

"Fine-Tuning JDBC Application Performance

JDBC - Create TablesExample

This chapter provides an example on how to create a table using JDBC application. Before
executing the following example, make sure you have the following in place −

 To execute the following example you can replace the username and password with
your actual user name and password.

 YourMySQL or whatever database you are using is up and running.

Required Steps
The following steps are required to create a new Database using JDBC application −

 Import the packages: Requires that you include the packages containing the JDBC
classes needed for database programming. Most often, using import java.sql.* will
suffice.

 Register the JDBC driver: Requires that you initialize a driver so you can open a
communications channel with the database.

 Open a connection: Requires using the DriverManager.getConnection() method to
create a Connection object, which represents a physical connection with a database
server.

 Execute a query: Requires using an object of type Statement for building and
submitting an SQL statement to create a table in a seleted database.

 Clean up the environment: Requires explicitly closing all database resources versus
relying on the JVM's garbage collection.

Java DatabaseMetaData interface

DatabaseMetaData interface provides methods to get meta data of a database such as

database product name, database product version, driver name, name of total number of

tables, name of total number of views etc.

Commonly used methods of DatabaseMetaData interface
o public String getDriverName()throws SQLException: it returns the name of the

JDBC driver.

o public String getDriverVersion()throwsSQLException: it returns the version

number of the JDBC driver.

o public String getUserName()throws SQLException: it returns the username of

the database.

o public String getDatabaseProductName()throws SQLException: it returns the

product name of the database.

o public String getDatabaseProductVersion()throwsSQLException: it returns

the product version of the database.

o public ResultSet getTables(String catalog, String schemaPattern, String

http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp524689
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp524689
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp524689
http://media.datadirect.com/download/docs/slnk/devref/devjdbc.html#wp524689

tableNamePattern, String[] types)throws SQLException: it returns the

description of the tables of the specified catalog. The table type can be TABLE,

VIEW,ALIAS, SYSTEM TABLE, SYNONYM etc.

How to get the object of DatabaseMetaData:

The getMetaData() method of Connection interface returns the object of

DatabaseMetaData. Syntax:

_____*********____

