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CPU   Scheduling 

Basic concepts(Introduction) 

• All computer resources are scheduled before use, one among them is 

CPU. 

CPU-I/O Burst Cycle 

• Process execution consists of a cycle of CPU burst and I/O burst. 

• An I/O bound program would have short CPU bursts. 

• A CPU bound program have long CPU bursts. 

• It is important in the selection of CPU scheduling algorithm.       

 

CPU Scheduler 

� Short term scheduler or CPU scheduler is used to select one of the 

processes from ready Queue to execute. 

 

Dispatcher 

 It gives control of the CPU to the process selected by scheduler. 

 

Dispatch Latency 

 Time taken for the dispatcher to stop one process and start another 

process 

 

 

 

 

 



Scheduling Criteria 

� CPU Utilization 

� To keep the CPU busy 

� Throughput 

     The number of processes that are completed per time unit is called 

Throughput (high). 

� Turnaround time 

     The time between job submission and job completion (low) 

� Waiting time 

     Time that a process spends waiting in the ready queue (low) 

� Response time 

     The amount of time it takes to start responding.(low) 

  It is desirable to maximize CPU utilization and throughput 

and to minimize turn around time,waiting time and response time. 

Pre-emptive & Non Pre-emptive Scheduling 

Non-Pre-emptive 

� In non Pre-emptive scheduling once the CPU has been allocated to a process, 

the process keeps the CPU until it releases the CPU. 

� Process moves from running state to waiting state. 

� Process terminates. 

Pre-emptive 

In pre-emptive scheduling the CPU allocated to a process can be taken away in 

the middle and allocated to another process. 

� Process switches from running state to ready state. 

� Process switches from waiting state to ready state. 

**************************************************************** 



Scheduling Algorithm 

 * CPU scheduling deals with the problem of deciding which of the 

processes in the ready queue is to be allocated the CPU.  

* There are many different CPU scheduling algorithms. In this section, 

we describe several of these algorithms. 

First-come, First-Serve Scheduling 

 * By far the simplest CPU scheduling algorithm is the first-come, first-

served scheduling (FCFS) algorithm . 

* With this scheme, the process that requests the CPU first is allocated 

the CPU first.  

* The implementation of the FCFS policy is easily managed with a FIFO 

queue. 

 * The code for FCFS scheduling is simple to write and understand. 

 * The average waiting time under the FCFS policy, however, is often 

quite long. 

 

 

 

 

 

 Consider the following set of processes that arrive at time 0, with the 

length of the CPU burst time given in milliseconds. 



 

Process  

 

Burst Time 

 

P1 

 

24 

 

P2 

 

3 

 

P3 

 

3 

 

If the processes arrive in the order P1,P2,P3,and served in FCFS order, we get 

the result shown in the following Gantt chart 

 

P1 

 

P2 

 

P3 

         0                                                          24                  27                     30 

 The waiting time is 0 milliseconds for process P1, 

24 milliseconds for process P2, and  

27 milliseconds for process P3.  

Thus, the average waiting time is (0+24+27)/3=17 milliseconds. 

 The average waiting time under a FCFS policy is generally not minimal, 

and may vary substantially if the process CPU burst times vary greatly. 

• The FCFS scheduling algorithm is non-preemptive. Once the CPU 

has been allocated to a process, that process keeps the CPU, either 

by terminating or by requesting I/O.  

• The FCFS algorithm is particularly troublesome for time-sharing 

systems. 



 

 

 Shortest-Job First Scheduling 

 A different approach to CPU scheduling is the shortest-job-first(SJF) 

algorithm. When the CPU is available, it is assigned to the process that has the 

smallest burst. The scheduling is done by examining the length of the next 

CPU burst of a process, rather than its total length. 

 As an example, consider the following set of process, with the length of 

the CPU burst time given in milliseconds: 

 

Process  

 

Burst Time 

 

P1 

 

6 

 

P2 

 

8 

 

P3 

 

7 

 

P4 

 

3 

 Using SJF scheduling we would schedule these processes according to 

the following Gantt Chart: 

 

P4 

 

P1 

 

P3 

 

P2 

0               3                                  9                            16                         24 

The waiting time is 3 milliseconds for process P1, 

16 milliseconds for process P2, 



9 milliseconds for process P3, and  

0 milliseconds for P4.  

Thus, the average waiting time is (3+16+9+0)/4=7 milliseconds.  

If we were using the FCFS scheduling scheme, then the average waiting 

time would be 10.25 milliseconds. 

• The SJF scheduling algorithm is provably optimal, in that it gives 

the minimum average waiting time for a given set of 

processes.(advantage) 

• The real difficulty with the SJF algorithm is knowing the length of 

the next CPU request. (disadvantage) 

• SJF scheduling is used frequently in long term scheduling.  

• The SJF algorithm may be either preemptive or non-preemptive. 

• A preemptive SJF algorithm will preempt the currently executing 

process, whereas a non-preemptive SJF algorithm will allow the 

currently running process, to finish its CPU burst. 

 

 

 

 

 

 

Shortest-remaining-time-first scheduling 

Shortest-remaining-time-first scheduling 



•  Preemptive SJF scheduling is sometimes called shortest-

remaining-time-first scheduling. 

 As an example, consider the following four processes, with the length of 

the CPU-burst time given in milliseconds: 

Process Arrival Time Burst Time 

P1 0 8 

P2 1 4 

P3 2 9 

P4 3 5 

 If the processes arrive at the ready queue at the times shown and need the 

indicated burst times, then the resulting SJF schedule is as depicted in the 

following Gantt chart: 

 

P1 

 

P2 

 

P4 

 

P1 

 

P3 

0       1                           5                         10                     17                             26  

• Process P1 is started at time 0, since it is the only process in the 

queue. 

•  Process P2 arrives at time 1. The remaining time for process 

 P1 (7 milliseconds) is larger than the time required by process 

P2(4milliseconds), so Process P1 is preempted, and process P2 is 

scheduled.  

• The average waiting time for this example is( (10-1) + (1-1) +     

(17-2) + (5-3)) /4=26/4=6.5 milliseconds.                                   

(allocated time – arrival time). 

A non-preemptive SJF scheduling would result in average waiting 

time of 7.75 milliseconds. 



PRIORITY SCHEDULING 

• The SJF algorithm is a special case of the general priority 

scheduling algorithm. 

• A priority is associated with each process , and the CPU is 

allocated to the process with the highest priority. 

• Equal priority processes are scheduled in FCFS order. 

• Priorities are generally some fixed range of numbers,such as          

0 to 7,or 0 to 4095.However there is no general agreement on 

whether 0 is the highest or lowest priority. 

 As an example, consider the following set of processes, assumed to have 

arrived at time 0, in the order p1,……p5, with the length of the CPU burst time 

given in milliseconds: 

Process Burst Time Priority 

P1 10 3 

P2 1 1 

P3 2 3 

P4 1 4 

P5 5 2 

Using priority scheduling, we would schedule these processes according to the 

following Gantt chart: 

P2 P5 P1 P3 P4 

    0      1                           6                                                 16              18          19 

The average waiting time is 8.2 milliseconds 

• Priorities can be defined either internally or externally.  

• Internally defined priorities use some measurable quantity or 

quantities to compute the priority of a process. For example, time 



limits, memory requirements, the number of open files, and the 

ratio of average I/O burst to average CPU burst have been used in 

computing priorities. 

•  External priorities are set by criteria that are external to the 

operating system, such as the importance of the process, the type 

and amount of fund being paid for computer use, the department 

sponsoring the work, and other, often political, factors. 

• Priority scheduling can be either preemptive or non-preemptive. 

  A major problem with priority scheduling algorithm is indefinite 

blocking or starvation.  

• A process that is ready to run but lacking the CPU can be 

considered blocked, waiting for the CPU. 

• A priority scheduling algorithm can leave some low-priority 

processes waiting indefinitely for the CPU. 

•  In a heavily loaded computer system, a stream of higher-processes 

can prevent a low-priority process from ever getting the CPU. 

•  A solution to the problem of indefinite blockage of low-priority 

processes is aging.  

• Aging is a technique of gradually increasing the priority of 

processes that wait in the system for a long time. 

•  For example, if priorities range from 0 (low) to 127 (high), we 

could increment the priority of a waiting process by 1 every 15 

minutes. Eventually, even a process with an initial priority of 0 

would have the highest priority in the system and would be 

executed. 

Round-Robin scheduling 



 The round-robin(RR) scheduling algorithm is designed especially for 

time-sharing systems.  

• It is similar to FCFS scheduling, but preemption is added to switch 

between processes.  

• A small unit of time, called a time quantum, or time slice, is 

defined. 

•  A time quantum is generally from 10 to 100 milliseconds. 

•  The ready queue is treated as a circular queue.  

• The CPU scheduler goes around the ready queue, allocating the 

CPU to each process for a time interval of  up to 1 time quantum. 

 To implement RR scheduling, we keep the ready queue as a FIFO queue 

of  processes. New processes are added to the tail of the ready queue.  

• The CPU scheduler picks the first process from the read queue, sets 

a time to interrupt after 1 time quantum, add dispatches the 

process. 

 One of two things will then happen.  

• The process may have a CPU burst of less than 1 time quantum. In 

this case, the process itself  will release the CPU voluntarily. The 

scheduler will then proceed to the next process in the ready queue. 

• Otherwise, if the CPU burst of the currently running process is 

longer than 1 time quantum, the timer will go off and will cause an 

interrupt to the operating system.  

• A context switch will be executed, and the process will be put at 

the tail of the ready queue. The CPU scheduler will then select the 

next process in the ready queue. 



 The average waiting time under the RR policy, however, is often quite 

long.Consider the following set of processes that arrive at time 0, with the 

length of the CPU-burst time given in milliseconds: 

Process Burst Time 

P1 24 

P2 3 

P3 3 

• If we use a time quantum of 4 milliseconds, then process P1 gets 

the first 4 milliseconds.  

• Since it requires another 20 milliseconds, it pre-empted after the 

first time quantum, and the CPU is given to the next process in the 

queue, process P2. Since process P2 does not need 4 milliseconds, it 

quits before its time quantum expires.  

• The CPU is then given to the next process, process P3. Once each 

process has received 1 time quantum, the CPU is returned to 

process P1 for an additional time quantum. The resulting RR 

schedule is  

 

P1 

 

P2 

 

P3 

 

P1 

 

P1 

 

P1 

 

P1 

 

P1 

 

 

   0           4            7           10          14          18          22         26          30 

The average waiting time is 17/3=5.66 milliseconds. 

 In the RR scheduling algorithm, no process is allocated the CPU for more 

than 1 time quantum in a row. 

•  If a process CPU burst exceeds 1 time quantum, that process is 

preempted and is put back in the ready queue. The RR scheduling 

algorithm is preemptive. 



 The performance of the RR algorithm depends heavily on the size of the 

time quantum. If the time quantum is very small (say 1 microsecond), the RR 

approach is called processor sharing. 

Multilevel Queue Scheduling 

 A multilevel queue-scheduling algorithm partitions the ready queue 

into several separate Queues.  

• The processes are permanently assigned to one queue, generally 

based on some property of the process, such as memory size, 

process priority, or process type. 

•  Each queue has its own scheduling algorithm. For example, 

separate queues might be used for foreground and background 

processes.  

• The foreground queue might be scheduled by an RR algorithm, 

while the background queue is scheduled by an FCFS algorithm. 

• In addition, there must be scheduling between the queues, which is 

commonly implemented as a fixed-priority preemptive scheduling. 

For example, the foreground queue may have absolute priority over 

the background queue. 

Look at an example of a multilevel queue scheduling algorithm with five 

queues: 



 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 

5. Student processes 

• Each queue has absolute priority over lower-priority queue. No 

process in the batch queue, for example, could run unless the 

queues for system processes, interactive processes, and interactive 

editing processes were all empty. 

•  If an interactive editing process entered the ready queue while a 

batch process was running, the batch process would be preempted. 

 Another possibility is to time slice between the queues. Each queue gets a 

certain portion of the CPU time, which it can then schedule among the various 

processes in its queue. 



DEADLOCK 

 A process requests resources; if the resources are not available at that 

time, the process enters a wait state. It may happen that waiting processes will 

never again change state, because the resources they have requested are held by 

other waiting processes. This situation is called a deadlock. 

� System Model 

A process may utilize a resource in only the following sequence: 

1. Request: If the request cannot be granted immediately (for example, 

the resource is being used by another process), then the requesting 

process must wait until it can acquire the resource. 

2. Use: The process can operate on the resource (for example, if the 

resource is a printer, the process can print on the printer). 

3. Release: The process releases the resource. 

         A set of processes is in a deadlock state when every process in the set is 

waiting for an event that can be caused by only another process in the set 

  To illustrate are three processes, each holding one of these tape drives. If each 

process now requests another tape drive, the three processes will be in a 

deadlock state. 

**************************************************************** 

Deadlock Characterization 

In a deadlock, processes never finish executing and system resources are tied 

up, preventing other jobs from ever starting. 

� Necessary Conditions 

A deadlock situation can arise if the following four conditions hold 

simultaneously in a system: 



1. Mutual exclusion: At least one resource must be held in a non sharable 

mode; that is, only one process at a time can use the resource. If another 

process requests that resource, the requesting process must be delayed 

until the resource has been released. 

2. Hold and wait: There must exist a process that is with atleast one 

resource and is waiting to acquire additional resources that are currently 

being held by other processes. 

3. No preemption: Resources cannot be preempted; that is, a resource can 

be released only voluntarily by the process holding it, after that process 

has completed its task. 

4. Circular wait: There must exist a set {P0,P1,…..,Pn} of waiting processes 

such that P0 is waiting for a resources that is held by P1,P1 is waiting for a 

resource that is held by P2,…Pn-1 is waiting for a resource that is held by 

Pn, and Pn is waiting for a resource that is held by P0. 

� Resource-Allocation Graph 

Deadlock can be described more precisely in terms of a directed graph 

called a system resource-allocation graph. This graph consists of a set 

of vertices V and a set of edges E. The set of vertices V is partitioned into 

different types of nodes P={P1,P2,…..,Pn},the set consisting of all the 

active processes in the system, and R={R1,R2,…..,Rm}, the set consisting 

of all resource types in the system. 

 A directed edge from process Pi to resource type Rj is denoted by 

Pi�Rj; it signifies that process Pi requested an instance of resource type 

Rj and is currently waiting for that resource. A directed edge from 

resource type Rj to process Pi is denoted by Rj�Pi ; it signifies that an 

instance of resource type Rjhas been allocated to process Pi. A directed 

edge Pi�Rj is called a request edge; a directed edge Rj�Pi is called an 

assignment edge. 



 Pictorially, we represent each process Pi as a circle, and each 

resource type Rj as a square. Since resource type Rj may have more than 

one instance, we represent each such instance as a dot within the square. 

 When process Pi request an instance of resource type Rj, a request 

edge is inserted in the resource-allocation graph. When this request can 

be fulfilled, the request edge is instantaneously transformed to an 

assignment edge. 

 The resource-allocation graph show in depicts the following 

situation. 

� The sets P,R, and E: 

o P={P1,P2,P3} 

o R={R1,R2,R3,R4} 

o E={P1�R1,P2�R3,R1�P2, R2�P2, R2�P1, R3�P3} 

� Resource instances: 

o One instance of resource type R1 

o Two instances of resource type R2 

o One instance of resource type R3 

o Three instances of resource type R4 

 



 

� Process states: 

♦ Process P1 is holding an instance type R

instance of resource type R

♦ Process P2 is holding an instance of R

for an instance of resource type R

♦ Process P3 is holding an instance of R

     If the graph contains no cycles, then no process in the system is deadlocked. 

If, on the other hand, the graph contains 

     To illustrate condition, let us return to the resource

in suppose that process P3 requests an instance of resource type R

resource instance is currently available, a request edge

graph. At this point, two minimal cycles exist in the system:

 P1�R1�P2�R3�P3�

 P2�R3�P3�R2�P2 

 

is holding an instance type R2, and is waiting for an 

instance of resource type R1. 

is holding an instance of R1 and R2, and is waiting 

for an instance of resource type R3. 

is holding an instance of R3. 

If the graph contains no cycles, then no process in the system is deadlocked. 

If, on the other hand, the graph contains a cycle, then a deadlock may exist.

To illustrate condition, let us return to the resource-allocation graph depicted 

requests an instance of resource type R2. Since no 

resource instance is currently available, a request edge P3�R2 is added to the 

graph. At this point, two minimal cycles exist in the system: 

�R2�P1 

 

, and is waiting for an 

, and is waiting 

If the graph contains no cycles, then no process in the system is deadlocked. 

a cycle, then a deadlock may exist. 

allocation graph depicted 

. Since no 

is added to the 

 



 

 

Methods for Handling Deadlocks 

 There are three different methods for dealing with the deadlock problem: 

� We can use a protocol to ensure that the system will never enter a deadlock 

state. 

� We can allow the system to enter a deadlock state and then recover. 

 

� We can ignore the problem all together, and pretend that deadlocks never 

occur in the system. This solution is the one used by most operating systems, 

including UNIX. 

     Deadlock prevention is a set of methods for ensuring that at least one of the 

necessary conditions cannot hold. These methods prevent deadlocks by 

constraining how requests for resources can be made. 

     Deadlock avoidance, on the other hand, requires that the operating system be 

given in advance additional information concerning which resources a process 

will request and use during its lifetime. 



 

 

Deadlock Prevention 

 By ensuring that at least one of these conditions cannot hold, we can 

prevent the occurrence of a deadlock. 

� Mutual Exclusion 

• The mutual-exclusion condition must hold for non sharable resources. For 

example, a printer cannot be simultaneously shared by several processes. 

• Read-only files are a good example of a sharable resource. 

� Hold and Wait 

• To ensure that the hold-and-wait condition never occurs in the system. 

• One protocol that can be used requires each process to request and be 

allocated all its resources before it begins execution. 

• An alternative protocol allows a process to request resources only when 

the process has none. 

• Eg: consider a process that copies data from a tape drive to a disk file, 

sorts the disk file, and then prints the results to a printer. If all resources 

must be requested at the beginning of the process, then the process, then 

the process must initially request the tape drive, disk file, and the printer. 

• The second method allowed the process to request initially only the tape 

drive and disk file. It copies from the tape drive to the disk, then releases 

both the tape drive and the disk file. The process must then again request 

the disk file and the printer. After copying the disk file to the printer, it 

releases these two resources and terminates. 

• There are two main disadvantages to these protocols. First, resource 

utilization may be low. 

• Second, starvation is possible. 



� No preemption 

• The third necessary condition is that there be no preemption of resources. 

• To ensure that this condition does not hold, we can use the following 

protocol. If a process that is holding some resources requests another 

resource that cannot be immediately to it (that is, the process must 

wait),then all resources currently being held are preempted. 

• If a process requests some resources, we first check whether they are 

available. If they are, we allocate them. If they are not available, we 

check whether they are allocated to some other process that is waiting for 

additional resources. If so, we pre-empt the desired resources from the 

waiting process and allocate them to the requesting process. 

� Circular Wait 

• One way to ensure that the circular-wait condition never holds is to 

impose a total ordering of all resource types, and to require that each 

process requests resources in an increasing order of enumeration. 

• Let R={R1,R2,……,Rm} be the set of resource types. We assign to each 

resource type a unique integer number. 

• We define a one-to-one function F:R�N, where N is the set of natural 

numbers. For example, if the set of resource types R includes tape drives, 

disk drives, and printers, then the function F might be defined as follows: 

F(tape drive)=1, 

F(disk drive)=5, 

F(Printer) =12. 

• We can now consider the following protocol to prevent deadlock: Each 

process can request resources only in an increasing order of enumeration. 

That is, a process can initially request any number of instances of a 

resource type, say Ri. After that, the process can request instances of the 

same resource type Rj if and only if F(Rj) > F(Rj). 



• We can require that, whenever a process requests an instance of resource 

type Rj, it has released any resources Ri such that F(Ri) > F(Rj). 

• If these two protocols are used, than the circular-wait condition cannot 

hold. 

 

Deadlock Avoidance 

 An alternative method for avoiding deadlock is to require additional 

information about how resources are to be requested. 

• Safe State  

� A state is safe if the system can allocate resources to each process (up 

to its maximum) in some order and still avoid a deadlock. More 

formally, a system is in a safe state only if there exists a safe 

sequence. A sequence of processes <P1,P2,…,Pn> is a safe sequence 

for the current allocation state if, for each Pi, the resources that Pi can 

still request can be satisfied by the currently available resources plus 

the resources held by all the Pj, with    j< i. In this situation, if the 

resources the process Pi needs are not immediately available, then Pi 

can wait until all Pj have finished. When they have finished, Pi can 

obtain all of its needed resources, complete its designated task, return 

its allocated resources, and terminate. When Pi terminates, Pi+1 can 

obtain its needed resources, and so on. If no such sequence exists, then 

the system state is said to be unsafe. 



 

� An unsafe state may lead to a deadlock. 

� To illustrate, we consider a system with 12 magnetic tape drives and 3 

processes process: P0,P1, and P2. Process P0 requires 10 tape drives, 

process P1 may need as many as 4, and process P2 may need  up to 9 

tape drives. Suppose that, at time t0, process P0 holding 5 tape drives, 

process P1 is holding 2, and process P2 id holding 2 tape drives. (Thus, 

there are 3 free tape drives.) 

 Maximum 

Needs 

Current 

Needs 

Allocated 

P0 10 5 5 

P1 4 2 2 

P2 9 7 2 

At time t0, the system is in a safe state. The sequence <P1,P0,P2> 

satisfies the safety condition. 

� Resource-Allocation Graph Algorithm 

• If we have a resource-allocation system with only one instance of each 

resource type, a variant of the resource-allocation graph defined in  can 

be used for deadlock avoidance. 

• In addition to the request and assignment edges, we introduce a new type 

of edge, called a claim edge. A claim edge Pi�Rj indicates that process 



Pi may request resource Rj at some time in the future. This edge resembles 

a requests edge in direction, but is represented by a dashed line. 

• Note that we check for safety by using a cycle-detection algorithm. 

• If no cycle exists, then the allocation of the resource will leave the system 

in a safe state. If a cycle is found, then the allocation will put the system 

in an unsafe state. 

 

• To illustrate this algorithm, we consider the resource-allocation graph. 

Suppose that P2 requests R2. Although R2 is currently free, we cannot 

allocate it to P2, since this action will create a cycle in the graph. A cycle 

indicates that the system is in an unsafe state. If P1 requests R2, and P2 

requests R1, then a deadlock will occur. 

� Banker’s Algorithm 

The resource-allocation graph algorithm is not applicable to a resource-

allocation system with multiple instances of each resource type. The deadlock-

avoidance algorithm that we describe next is applicable to such a system, but is 

less efficient than the resource-allocation graph scheme. This algorithm is 

commonly known as the banker’s algorithm. 



When a new process enters the system, it must declare the maximum number 

of instances of each resource type that it may need. This 

exceed the total number of resources in the system. When a user requests a set 

of resources, the system must determine whether the allocation of these 

resources will leave the system in a safe state. If it will, the resources are 

allocated; otherwise, the process must wait until some other process releases 

enough resources. 

We need the following data structures:

� Available: A vector of length m indicates the number of available 

resources of each type. If 

resource type Rj available.

� Max: An n x m matrix defines the maximum demand of each process. 

If Max[i,j]=k, then P

Rj. 

� Allocation: An n x m matrix defines the number of resources of each; 

type currently allocated to each process. If Allocation[i,j]=k, then 

process Pi is currently allocated k instances of resource type R

When a new process enters the system, it must declare the maximum number 

of instances of each resource type that it may need. This number may not 

exceed the total number of resources in the system. When a user requests a set 

of resources, the system must determine whether the allocation of these 

resources will leave the system in a safe state. If it will, the resources are 

otherwise, the process must wait until some other process releases 

We need the following data structures: 

A vector of length m indicates the number of available 

resources of each type. If available[j]=k, there are k instances o

available. 

 

An n x m matrix defines the maximum demand of each process. 

If Max[i,j]=k, then Pi may request at most k instances of resource type 

An n x m matrix defines the number of resources of each; 

allocated to each process. If Allocation[i,j]=k, then 

is currently allocated k instances of resource type R

When a new process enters the system, it must declare the maximum number 

number may not 

exceed the total number of resources in the system. When a user requests a set 

of resources, the system must determine whether the allocation of these 

resources will leave the system in a safe state. If it will, the resources are 

otherwise, the process must wait until some other process releases 

A vector of length m indicates the number of available 

there are k instances of 

An n x m matrix defines the maximum demand of each process. 

may request at most k instances of resource type 

An n x m matrix defines the number of resources of each; 

allocated to each process. If Allocation[i,j]=k, then 

is currently allocated k instances of resource type Rj. 



� Need: An n x m matrix indicates the remaining resource need of each 

process. If Need[i,j]=k, then Pi may need k more instances of resource 

type Rj to complete its task. Note that  

Need[i,j]=Max[i,j]-Allocation[i,j]. 

� Safety Algorithm 

The algorithm for finding out whether or not a system is in a safe state can 

be described as follows: 

1. Let work and finish be vectors of length m and n, respectively. Initialize 

work:=Available and Finish[i]:=false for i=1,2,…,n. 

2. Find an i such that both 

a. Finish[i]=false 

b. Needi< work 

If no such i exists, go to step  

3. Work:=work+Allocation, 

Finsh[i]:=true 

Go to step 2. 

4. If Finish[i]=true for all i, then the system is in a safe state. 

� Resource-Request Algorithm 

Let Requesti be the request vector for process Pi. If Requesti[j]=k, then 

process Pi wants k instances of resources type Rj. When a request for 

resources is made by process Pi the following actions are taken: 

1. If Requesti<Needi, go to step2. Otherwise, raise an error condition, since 

the process has exceeded its maximum claim. 

2. If Requesti< Available, go to step 3. Otherwise, Pi must wait, since the 

resources are not available. 

3. Have the system pretend to have allocated the requested resources to 

process Pi by modifying the state as follows: 

Available:=Available-Requesti; 

Allocationi:=Allocationi+Requesti; 



Needi:=Needi-Requesti; 

 If the resulting resource-allocation state is safe, the transaction is 

completed and process Pi is allocated its resources. However, if the new state is 

unsafe, then Pi must wait for Requesti and the old resource-allocation state is 

restored. 

**************************************************************** 

Deadlock Detection 

 If a system does not employ either a deadlock-prevention or a deadlock-

avoidance algorithm, then a deadlock situation may occur. 

• An algorithm that examines the state of the system to determine whether 

a deadlock has occurred. 

• An algorithm to recover from the deadlock. 

Single Instance of Each Resource Type 

• If all resources have only a single instance, then we can define a deadlock 

detection algorithm that uses a variant of the resource- allocation graph, 

called a wait for graph. We obtain this graph from the resource-allocation 

graph by removing the nodes of type resource and collapsing the 

appropriate edges. 

• To detect deadlocks, the system needs to maintain the wait-for graph and 

periodically to invoke an algorithm that searches for a cycle in the graph. 



Several Instances of a Resource Type 

• The wait-for graph scheme is not applicable to a resource-allocation 

system with multiple instances of each resource type. 

• The algorithm employs several time-varying data structures that are 

similar to those used in the banker’s algorithm. 

• Available: A vector of length m indicates the number of available 

resources of each type. 

• Allocation: An n x m matrix defines the number of resources of 

resources of each type currently allocated to each process. 

• Request: An n x m matrix indicates the current request of each process. 

If Request[i,j]=k, then process Pi is requesting k more instances of 

resource type Rj. 

• Initialize work := Available,if allocation#0 then Finish [i] := false; 

otherwise, Finish[i] := true. 

• Find an index i such that both 

a. Finish[i]=false. 

b. Requesti< work. 

If no such i exists, go to setp4. 



• Work := work + allocationi. Finish[i] := true, go to step2. 

• If Finish[i]=false, for some i,1< i < n, then the system is in a deadlock 

state. 

• This algorithm requires an order of m x n
2
 operations to detect whether 

the system is in a deadlock state. 

� Detection-Algorithm Usage 

• Detection algorithm is invoked based depends on two factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? 

• If deadlock occur frequently, then the detection algorithm should be 

invoked frequently. 

• A less expensive alternative is simple to invoke the algorithm at less 

frequent intervals. 

Recovery from Deadlock 

 When a detection algorithm determines that a deadlock exists,, several 

alternatives exist. One possibility is to inform the operator that a deadlock has 

occurred, and to let the operator deal with the deadlock manually. The other 

possibility is to let the system recover from the deadlock automatically. There 

are two options for breaking a deadlock. 

� Process Termination 

To eliminate deadlocks by aborting a process, we use one of two 

methods. 

• Abort all deadlocked processes: This method clearly will break 

the deadlock cycle, but at a great expense, since these processes 

may have computed for a long time, and the results of these partial 

computations must be discarded, and probably must be recomputed 

later. 



• Abort one process at a time until the deadlock cycle is 

eliminated: This method incurs considerable overhead, since, after 

each process is aborted, a deadlock-detection algorithm must be 

invoked to determine whether any processes are still deadlocked. 

• Many factors may determine which process is chosen, including: 

1. What the priority of the process is? 

2. How long the process has computed, and how much longer the 

process will compute before completing its designated task? 

3. How many and what type of resources the process has used  (for 

example, whether the resources are simple to pre-empt)? 

4. How many more resources the process needs in order to 

complete ? 

5. How many processes will need to be terminated? 

6. Whether the process is interactive or batch? 

� Resource Preemption 

        If preemption is required to deal with deadlocks, then three issues 

need to be addressed: 

1. Selecting a victim: We should determine which resources and which 

processes are to be pre-empted. 

2. Rollback: If we pre-empt a resource from a process,  Clearly, it 

cannot continue with its normal execution; it is missing some needed 

resource. We must roll back the process to some safe state, and restart 

it from that state. 

3. Starvation: we should ensure that resources will not always be 

preempted from the same process. 

******************************************************** 


