PROGRAMMING IN JAVA
UNIT-1:BASICS, ESSENTIALS, CONTOL STATEMENT AND CLASSES & OBJECTS
COMPUTER SYSTEMS   
 Computer is an electronic device which takes input from user, stores the data, process the data using given instructions and then gives the output  . The set of instructions is called a program. The program is written in languages like c, c++, Java etc.,
HARDWARE AND SOFTWARE 
The computer system consists two elements called hardware and software 

The physical components are called hardware. Eg: CPU, main memory, keyboard, monitor, printer etc.,
The set of instructions with which a computer can perform tasks are called software. Eg: DOS, UNIX, windows, Payroll system, Reservation system etc.,

Hardware components
(i) Central processing Unit (CPU)
It is the main processing unit which is like the brain to computer. It consists of Arithmetic Logic Unit (ALU) and Control Unit (CU). ALU performs arithmetic and logic functions and CU controls each and every function of the computer.

(ii) Main memory: It consists Random Access Memory (RAM) constructed by ICs. It is volatile memory which loses information when power is lost it is directly accessed by CPU. It is expensive and limited memory.
(iii) Secondary Storage memory: Magnetic disks or tapes are called secondary storage memory which is non-volatile and the information is not lost when is lost.

(iv) Input devices: To read input we use input devices like keyboard, touch screen, mouse etc.,

(v) Output devices: They convert electronic information to human understandable form like audio, video etc., Eg for output devices are monitor, printer, speaker etc.

Software components 

The two major elements of software are 

1. System software

2. Application software`

System Software: These programs are used to do own task of computer and operation of hardware. Eg: DOS, UNIX, Windows etc.,
Application Software: These programs enable the computer to do user specific tasks like creating documents, drawing pictures etc., Eg: payroll system, Railway reservation etc.,

Computer Languages: Three types of computer languages are
1. Low level languages (or machine language)

2. Assembly languages

3. High level languages

1. Low level languages: It is in binary form consisting 0’s and 1’s 

Disadvantage: It is machine understandable form but hard to understand and learn for humans.

Advantage: It allows faster execution.

2. Assembly language: It consists of mnemonic codes (or symbolic Code)  like ADD B; SUB A; etc., It will be converted to binary form  before execution by assembler. 

Advantage: It is easier than machine language 

Disadvantage: It is slower than machine language. It is machine dependent.
3. High level languages: It resembles simple English words and mathematical expressions. like -- if (a< 10) then. Eg for high level language are C,C++,Java. 
Advantages: 
· Use familiar English terms and arithmetic rules.

· Easy to learn`

· Easy to correct or modify.

· Procedural and problem oriented.

· Portable. Not machine dependent.

Disadvantages: 
· Slower than machine and assembly language.
· Needs interpreter or or compiler to translate into machine code.

· Needs additional memory space to store interpreter or compiler..

STAGES OF JAVA
 C was developed in Bell laboratories in 1972 by Dennis Ritchie. It is then developed into ‘C with classes and then into c++ an object oriented language. Java derives much of its characters from C and C++. But it is different from C++. It cannot be said as just an enhanced version of C++.It was designed and tested by real working programmers. It is cohesive, logically consistent and gives full control to the programmer.
1. Stage 1: Web programming language

2. Stage 2: Application Development language

3. Stage 3: Enterprise development language.
Stage1: Web programming language: It is called as JDK 1.0 version. It is small language with 200 classes, basic GUI facilities simple event handling to make dynamic web pages and small personal programs.

Stage 2: Application Development Language: JDK 1.1 comes with many new classes and enhancements like Delegation event model, JDBC interface and allowing access to internal class definition to develop new tools.
Stage 3: Enterprise development language. JDK 1.2 pushed Java to enterprise development language. It allows writing business applications and back-end applications. Java Foundation classes (JFC) are included useful for constructing real world applications.

ORIGIN OF JAVA  
In 1991, James Gosling the leading architect of Sun Micro system with his coworkers Mike Sheridan and Patrick Naughton designed for interactive TV. They wanted a hardware independent, intermediate code for virtual machine (imaginary CPU). This byte code will be interpreted to machine code by interpreter. Initially they call this language as OAK. 

The green project team in 1992 demonstrated their language to control home appliances. Then in 1993 they developed applets after WWW is appeared in Internet. In 1994 they developed a browser called Hot Java to run applets in internet In 1995 OAK is renamed as Java and the JDK versions from 1.0 to 1.6 are released. Then Java SE 6, Java SE7, Java SE8, Java SE9 are released.
OOPS: 

· Object oriented programming System divides the program into many parts called objects.

· Objects contain Data and Functions.

Concepts of OOPs:

** Object:  - Data and functions are combined into single entity called object.

** Class:  - Collection of similar objects is called class.
** Encapsulation: - Data can not be directly accessed by the user. Data is hidden.  Data and functions are encapsulated.

** Inheritance: - New class is derived from old one. Old class is called base class or .parent class. Derived class is called sub class or child class. Deriving one new class from one base class is called single inheritance. Deriving one class from more than one base class is called multiple inheritance.
** Polymorphism: - Base class and derived class perform different functions for the same message. We can both override and overload the functions in polymorphism.

WHAT IS JAVA? 
Java is a simple, small and Object Oriented programming language. It is Secure and Robust. It is both compiled and interpreted and portable to any machine. It is multithreaded, dynamic and high performing language.
 It has 2 types programs,

1. Application program (stand alone program)
 2. Applet program (embedded with HTML)

FEATURES OF JAVA
1. Simple: – It is a small and simple language and can run in small computers also. It does not support pointers, header files and operator overloading.
2. Object oriented: It organizes the program as set of objects.

3. Robust: Java program do not crash system if serous error occurred. Instead, they create exception.

4. Secure: Byte code is verified before execution. Java program can not access or disturb memory.

5. Compiled and interpreted: It is both compiled and interpreted since JVM is used.





Compiler


Interpreter



    Sample1.java                                 JVM
6. Portable: Java byte code can be used in any machine. So it is highly portable.

7. Multithreaded: Can handle many tasks simultaneously, without waiting for the completion of another task.

8. High Performance: Executed very fast, because bytecode only is to be interpreted.

9. Architecture Neutral: It can run on variety of CPU and OS.

10. Dynamic: It can link libraries, functions and methods dynamically.

 WHAT IS JDK? 

       Java Development Kit (JDK) is a software environment consists of various tools to develop and execute Java programs and applets. It includes the tools like JRE,java,javac,jar,javadoc,appletviewer,javah,jdb,javap etc.,
(i) Java Runtime Environment-(JRE)
(ii) Interpreter/Loader-(java)

(iii) Compiler-(javac)

(iv) Archiver-(jar)

(v) Documentation generator-(javadoc)

(vi) To run applet without web browser-(appletviewer).

(vii) To generate C Headers-(javah)

(viii) Java debugger-(jdb)

(ix) Class file disassemble-(javap)

WHAT IS JVM?
Java virtual machine. Java source code is compiled into bytecode for virtual machine. JVM converts Bytecode to machine code.

Compiler


Interpreter


[image: image1]
Sample1.java



JVM
APPLICATIONS OF JAVA
· Used in Computer animation
· To access Relational Databases.

· In Artificial intelligence and Expert systems

· In CAD/Cam systems

· In Logical Networking designing

· To develop computer Games

· Simulation and modeling

· Neural networks and parallel programming

· Real time systems.

API
    Application Programming interface is a list of classes, interfaces and packages. Most basic tasks are performed by API classes and packages. So, the code written is minimized.





(i) java.lang-This package has wrapper classes, strings, threads etc. and imported as default.

(ii) java.util- includes classes like stack, linked list,array, hash table ets.,
(iii) java.io- includes data streams, serialization and file systems.

(iv) java.awt- Abstract Window Toolkit for GUI development. Includes windows, buttons, lists etc.,

(v) java.net- includes networking classes .

(vi) java.applet- includes classes for creating and implementing applets.
(vii) java.sql- Structured query language-includes classes to connect with database.

STRUCTURE OF JAVA PROGRAM





Package Statement: Tells the compiler the class belongs to the specified package. It is the first statement.

Import statement: It allows accessing the classes in some other packages.

Interface statement: Allows implementing multiple inheritance. An interface contains methods declarations only not method definitions.

Class definition: A program may contain any number of classes

Main method: It is starting point of execution. Inside main method objects of all classes are created and manipulated.

 Example program
Sample.java

class Hello

{public static void main(String[ ] args)

{ 
System.out.println(“Hello World”);

    }

 }

TOKENS
  Smallest individual entities are called tokens. The five types of tokens are

1. Reserved keywords (Eg. if, for, while…)

2. Identifiers or variables(Eg. x,rad …)

3. Literals- called as constants((Eg.integer,string..)

4. Operators  (Eg. +,-, <,> ..)

5. Seperators ( Eg.( ), [ ], {},; …)

Variables: It represents memory location to store data.

Rules for Naming variables:

· The first character is an alphabet or underscore(_) or dollar sign ($).
· Commas or blank space or special characters are not allowed.

· keywords are not allowed.
· Variable names are case sensitive.

Declaring variables:  Syntax: Data_type Variable_name;

                                   Eg: int age;

Initializing variables: Syntax: Data_type variable_name=value or expression;




Eg: int age=21;

Literals: Sequence of characters to represent constant values are called literals. The five types are

(i) Integer literals (eg: int mark1=49;)
(ii) Floating point literals(eg: float tax=4.5;)

(iii) Character literals(eg: char Gender=’F’;)

(iv) String literals(Eg: String stud_name=”Abi”;)

(v) Boolean literals.(Eg: Boolean result=true;)

Operators:

	Category
	Operator
	Example
	Meaning

	Arithmetic operators
	+
	A+B
	Addition

	
	-
	a-b
	Subtraction

	
	*
	A*b
	Multiplication

	
	/
	a/b
	Division

	
	%
	A%b
	Modulo division

	Relational operator
	<
	A<b
	Less than

	
	>
	a>b
	Greater than

	
	<=
	A<=b
	Less than or equal to

	
	>=
	a>=b
	Greater than or equal

	
	==
	A==b
	Equal to

	
	!=
	A!=b
	Not equal to

	Logical operator
	&&
	A=10 && b<5
	Logical AND

	
	||
	A=10 || b<5
	Logical OR

	
	!
	!(a<5)
	Logical Not

	Assignment operator
	+=
	X+=a
	Add assign

	
	- =
	x-=a
	Subtract assign

	
	*=
	X*=a
	Multiply assign

	
	/=
	x/=a
	Divide assign

	
	%=
	X%=a
	Modulo assign

	Increment/Decrement operator
	++
	A++

++A
	Add 1 with A after use

Add 1  before use

	
	--
	A--

--A
	Subtract 1 after use

Subtract 1 before use

	Bitwise operator
	&
	Bitwise AND
	Multiply individual bits

	
	|
	Bitwise OR
	Add individual bits

	
	<<
	Shift left
	Shifts the bits left

	
	>>
	Shift right
	Shifts the bits right

	
	~
	Complement
	Change 0’s to 1’s and vice versa.

	Conditional operator
	?
	(x>5)?8:7
	If x>5 is true then x becomes 8 else x becomes 7.

	Special operators
	instanceof
	t instanceof Test
	Used to find the object t is instance of the class Test.

	
	Member selection (.) operator
	Eg1:Stud.regno

Eg2: Stud.grade( )
	Access the variable of the class.

Access the method of the class.


DATA TYPES
Data Type


Primary Data type





         









Secondary Data Type

Byte Integer   Float  Character   Boolean   



      





                          Array  Pointer  Structure  Union  Class
Primary Data Types
Byte: Smallest individual type is called byte. It consists 8 bits.

Integer: It is signed 32 bit data type to hold integers. The size can be varied for short or long integers.
Float: It is single precision signed 32 bit data type to hold real numbers
Character: Basically it holds a single character. 

Boolean: To store true or false value.

Secondary Data Types
Array: It holds group of data of same data type. Its dimension can be single, double or multiple.

Pointer: To create dynamic memory, pointer is used. It can be of any primary data type.

Structure: It is user defined data type to hold group of data of different data types. 

Union: It is user defined data type to hold group of data of different data types. But all data share a common memory space.

Class: It is user defined data type to hold group of data of different data types and many methods to do different tasks 

 TYPE CONVERSION: 
If a data of one type is assigned to another type automatic type conversion takes place if two data types are compatible and destination data type is greater than source data type. Automatic type conversion is called implicit conversion. If needed explicit conversion can be done. The syntax for explicit conversion is:     (Target_type) value;


Eg: (float) age;
SCOPE OF VARIABLES
If a variable is declared inside a block it cannot be seen from outside the block and it is called local variable and it can be accesses only within that block. If a variable is not declared within a block it can be seen from anywhere and is called as global variable.

COMMENTS
 They are non-executable statements meant for user’s convenience.

(i) Single line comment: starts with //. It allows one line comment.

(ii) Multiline comment: starts with /* and ends with */

(iii) Documentation comment: starts with /** and ends with */

STRING 
· It is sequence of characters.

· String starts with uppercase while int, double etc., starts with lowercase.

· Empty string has no character- “ “

· In Java any input is read as string only and then it is to be converted into respective data type

INPUT / OUTPUT STATEMENTS
a)
Console output: Its class name is – System. Objcet name is –out. It has two methods- print( ) and println( ).

Eg1:     System.out.print(“Welcome”;

Eg2:     System.out.println(“welcome”);

b)
Keyboard input: The input received through keyboard is stored buffer in the form of bytes. It is read as a single character at a time, by the object of InputStreamReader class. The characters are then stored as a whole string and then read. The string is converted to required data type.

Example program:

import java.io.*;

class Hello

{public static void main(String[] args) throws IOException

System.out.print(“Enter amount”);

InputStreamReader reader = InputStreamReader(System.in);

BufferedReader in = new BufferedReader(reader);

String text=in.readline( );

int dollar=Integer.parseInt(text);

System.out.print(“The amount is = “ + dollar);

}




Buffer- Stored in bytes.

reader





‘reader’ is the Object of 

InputStreamReader. Reads a single character at a time.


‘in’ is the object of BufferedReader. It stores as a whole string
text
                                                          Readline method reads the string and stores                                                                                                       ……………………………………….the string in the variable ‘text’.
dollar
                                                          The string is converted into integer and                     ………………………………………..stored in the variable ‘dollar’.
SCANNER CLASS
 
Scanner breaks input into tokens using a delimiter. The resulting tokens are converted into values of different types using next methods

· next( ) methods are used for Numeric and String methods.

· hasnext( ) methods are used for Boolean methods. 

For example int nextInt( ) returns next token as integer type. If it is not an integer an exception is thrown.

next methods
int nextInt( ) – returns next token as int.

long nextLong( ) – returns next token as long.

float hasFloat( ) – returns next token as float.

double nextDouble( ) – returns next token as double.

String nextString( ) – returns next token as String.

String nextLine( ) – returns next of current line.

void close( ) – close the scanner.

hasNext methods
boolean hasNextLine – returns true if next line exists.

boolean hasNextInt – returns true if next token is integer.

boolean hasNextFloat – returns true if next token is float

TYPE WRAPPING, AUTO BOXING AND UNBOXING
1. TYPE WRAPPING

Java uses primitive types like int, double, float etc., as basic data types. Sometimes we cannot use primitive types as it is and we need object representation. 

Java provides type wrapper to encapsulate primitive types within an object. Examples for type wrapper classes are Byte, Short, Integer, Long, Float, Double etc.,

Character(char ch)   - converts char into Character object.

Boolean(boolean bool_val)  - converts boolean into Boolean object.

Byte(byte b)   - converts byte into Byte object.

Short(short sh)  - converts short into Short object.

Integer(int i)   - converts int into Integer object.

Long(long l)  - converts long into Long object.

AUTO-BOXING
It is the process of encapsulating primitive types automatically into its equivalent type wrapper.

AUTO-UNBOXING
 It is the process of extracting the value automatically from its type wrapper.

Advantage of auto-boxing and auto-unboxing:

1. Don’t need explicit typecasting.

2. Helps prevent errors.

3. Allow to use primitive types and type wrapper class object interchangeably. 
CONTROL STATEMENTS
The control statements are used to change the sequence of execution. The types of control statements are

1. Decision Making statements
a.) if 

b.) switch

2. Repetitive Statements

a.) while

b.) do…. While

c.) for 
3. Jumping Statements

a.) Break

b.) Continue

c.) Return
1. DECISION MAKING STATEMENTS
IF STATEMENT
It is used to check a condition and if the condition is true, the  if block is executed. If the condition is false the else block is executed.

Syntax :    if (condition)

                {statement block}

                 else

                {statement block}
Eg:
        if (a>b)
                
   c = a;

                    else



   c=b;

· if and else are keywords.

· (a>b) is the text expression.

This can also be expressed using a ternary expression. ? is called ternary operator.

C = (a>b) ? a : b;

SWITCH-CASE STATEMENTS
Nested if statements can be replaced by switch- case expression. Based on the value of a test expression the corresponding block of statements is executed. 
Syntax:
switch (expression)




{



   case value_1:  statement block1;




   case value_2:  statement block1;





--




   case value_n:  statement block1;




   default : default block;



}

Eg:
 
int standard;



switch(standard)

   

   { case 1:



       case 2:



       case 3:



       case 4:



       case 5: System.out.print(“Primary school”);



       case 7:



       case 8: System.out.print(“Middle school”);



       case 9:



       case 8: System.out.print(“High school”);



       default : System.out.print(“Higher secondary”);



  }
2. REPETITIVE STATEMENTS
WHILE STATEMENT
It tests a condition and while the condition is true, it repeats the execution of statement block, otherwise it exits from the block.
Syntax:    
while (condition)



  { 



statement block;



  }

Eg:

j=1;



while(j<=4)



{ System.out.print(j);



   j=j+1;



}                    ---- It print the ‘j’ values 1   2   3   4 and exits when j=5
DO-WHILE STATEMENT
It first executes the block and then tests a condition. While the condition is true, it repeats the execution of statement block, otherwise it exits from the block. It ensures at least one time execution of the block.
Syntax:    
do



{ 


       Statement block;



 }



while(condition);
Eg:

j=1;



do



{ System.out.print(j);



   j=j+1;



} while(j<=4)    --- It print the ‘j’ values 1   2   3   4 and exits when j=5

FOR STATEMENT
It executes the statement block for fixed number of times. The initial value, test condition and steps to be incremented/decremented are mentioned in the for statement.

Syntax:    for(initial value; test condition; steps to increment/decrement)



{



statement block;



}

Eg: 

for(int j=1; j<=5; j++)



{ System.out.print(“Hello”);



}
CLASSES AND OBJECTS
Variable declaration:


Syntax: 
Data_type Variable_name;


Eg:

int n;

Function declaration:


Syntax: 
return_type Functionname(argument_list)




{ statement block }

· Method/Function declaration has three parts 1. Return Data type 2. Method name 3. argument list.

CLASS
General form/structure/format/skeleton of a class: 

class class_name

{data_type1 name1;

data_type2 name2;
return_type1 method_name1(argument_list)

{  }
return_type2 method_name2(argument_list)

{ }

--
   --
}
Example:
class Rectangle
 {    int len;
(Data
       int wid;
(Data
     int rectArea( )(Method


          { return leen * wid;




}



   }

OBJECT CREATION
· An object is a single instance of a class.

· Process of creating object is called instantiation

· Any number of object can be created for single class.

Eg: 
Rectangle r1= new Rectangle( );


Rectangle r2= new Rectangle( );



    r1




r2
The two objects r1, r2 are created.

If we use 

Rectangle r3= new Rectangle( );

Rectangle r4= r3;


r3
r4
Both r3 and r4 refers a same object. So multiple references for one object. If we set

r3= Null                           --then r4 is still referencing the same object.
CONSTRUCTORS
· It is used to create an object and initialize that object.

· Constructor name and class name is same.

· May or may not have argument list.

· If it is not declared explicitly, a default constructor will be created.

· Do not have return data type not even void.

· Can not invoke constructor of an existing object.

Example programs for constructor with argument       -    and without argument:

class  Rectangle



class Reactangle

   { int len;




{ int len;

      int wid;




   int wid;

Rectangle(int a, int b)



Rectangle( )

   { len=a;




    { len= 10;

      wid=b;




       wid=5;

   }





    }

int rectArea( )




int rectArea( )

   { return len * wid; 



   { return len * wid; 

   }





   }

}





}



class Demo




class Demo

{ public static void main(String[} args)         { public static void main(String[} args)

  { Rectangle r1= new Rectangle(10,5);
    { Rectangle r1= new Rectangle(10,5);

    System.out.print(“Area=”



System.out.print(“Area=”

+r1.rectArea( ));
                                 + r1.rectArea( ));

  }





     }
}





}
CONSTRUCTOR OVERLOADING
· A class can have many constructors with different signature(name and argument list)

· They have different sequence of parameter types.

· Constructor overloading is an example for polymorphism.

Example:
class  Rectangle



   




    {  {    int len;

      int wid;


Rectangle(int a, int b)


 { len=a;

wid=b;

}

Rectangle( )

   { len=10;




          




            wid=5;

   }





    

int rectArea( )


   { return len * wid; 

   }





   

}








class Demo






{ public static void main(String[} args)         

  { Rectangle r1= new Rectangle(20,5); 

 ( First constructor is called
     Rectangle r2= new Rectangle( );
 

( Second constructor is called   

System.out.print(“Area=”+  r1.rectArea( ));
System.out.print(“Area=”+  r2.rectArea( ));

  }

}
COPY CONSTRUCTORS
· It creates duplicate of an existing object.

· In copy constructor it has only one parameter- the reference to an object

Example:

class  Rectangle



   




    {  {    int len;

      int wid;


Rectangle(int len, int wid)


 { this.len=a;

this.wid=wid;

}

Rectangle(Rectangle  p )

   { this.len=p.len;




          




      this.wid=p.wid;

   }





    

int rectArea( )


   { return len * wid; 

   }





   

}








class Demo






{ public static void main(String[} args)         

  { Rectangle r1= new Rectangle(20,5); 

 ( First constructor is called

     Rectangle r2= new Rectangle(r1 );
 
( Second constructor is called   

System.out.print(“Area=”+  r1.rectArea( ));

System.out.print(“Area=”+  r2.rectArea( ));

  }

}

Returning object by method: An object can return an object as it returns any other variable.

Eg:  Obj disp( )

      { Obj temp=new Obj(a+5);

         return temp;     -----(  The object ‘temp’ is returned by a method disp( ).

    }

toString( ) method:It returns the object in string form. It returns object’s name and hash code.

‘THIS’  KEYWORD      

*) It refers the current object. It is used to remove name space conflict.
Rectangle(int len, int wid)

{ this.len=len;

  this wid=wid;


}

· ‘this.len’ and ‘this.wid’ are variables of the object currently used.

· Use of other variable names like a, b are avoided.

GARBAGE COLLECTION
New operator allocates memory. Garbage collection mechanism automatically deallocates memory when it is not needed anymore. Sometimes we need to give finalize ( ) method explicitly to free the memory allocation.
Source code





Byte code





Machine code





Machine code





Byte code





Source code





KeyBoard





              System.in





in





Package statement





Import System





Interface Statements





Class definition


Main method





       API Packages





lang





util





io





awt





net





applet





sql








