
MOBILE APPLICATION DEVELOPMENT

UNIT 1

What is a Mobile Operating System (Mobile OS)?
 A Mobile OS also called a mobile OS, is an OS that is specifically designed to run on mobile

devices such as mobile phones, smart phones, PDAs, tablet computers and other handheld

devices.

Linux or Windows operating system controls your desktop or laptop computer, a mobile

operating system is the software platform on top of which other programs can run on mobile

devices. The operating system is responsible for determining the functions and features available

on your device, such as thumb wheel, keyboards, WAP, synchronization with applications,

email, text messaging and more. The mobile OS will also determine which third-party

applications (mobile apps) can be used on your device.

Types of Mobile Operating Systems

When you purchase a mobile device the manufacturer will have chosen the operating system for

that specific device. Often, you will want to learn about the mobile operating system before you

purchase a device to ensure compatibility and support for the mobile applications you want to

use.
9 Popular Mobile Operating Systems

1. Android OS (Google Inc.)

The Android mobile operating system is Google's open and free software stack that includes an

operating system, middleware and also key applications for use on mobile devices, including

smartphones. Updates for the open source Android mobile operating system have been

developed under "dessert-inspired" version names (Cupcake, Donut, Eclair, Gingerbread,

Honeycomb, Ice Cream Sandwich) with each new version arriving in alphabetical order with

new enhancements and improvements.
2. Bada (Samsung Electronics)

Bada is a proprietary Samsung mobile OS that was first launched in 2010. The Samsung Wave

was the first smartphone to use this mobile OS. Bada provides mobile features such as

multipoint-touch, 3D graphics and of course, application downloads and installation.
3. BlackBerry OS (Research In Motion)

The BlackBerry OS is a proprietary mobile operating system developed by Research In Motion

for use on the company’s popular BlackBerry handheld devices. The BlackBerry platform is

popular with corporate users as it offers synchronization with Microsoft Exchange, Lotus

https://www.webopedia.com/TERM/L/Linux.html
https://www.webopedia.com/TERM/M/Microsoft_Windows.html
https://www.webopedia.com/TERM/O/operating_system.html
https://www.webopedia.com/TERM/T/text_messaging.html
https://www.webopedia.com/TERM/A/android_codenames.html
https://www.webopedia.com/TERM/P/proprietary.html
https://www.webopedia.com/TERM/B/BlackBerry.html

Domino, Novell GroupWise email and other business software, when used with the BlackBerry

Enterprise Server.
4. iPhone OS / iOS (Apple)

Apple's iPhone OS was originally developed for use on its iPhone devices. Now, the mobile

operating system is referred to as iOS and is supported on a number of Apple devices including

the iPhone, iPad, iPad 2 and iPod Touch. The iOS mobile operating system is available only on

Apple's own manufactured devices as the company does not license the OS for third-party

hardware. Apple iOS is derived from Apple's Mac OS X operating system.
5. MeeGo OS (Nokia and Intel)

A joint open source mobile operating system which is the result of merging two products based

on open source technologies: Maemo (Nokia) and Moblin (Intel). MeeGo is a mobile OS

designed to work on a number of devices including smartphones, netbooks, tablets, in-vehicle

information systems and various devices using Intel Atom and ARMv7 architectures.
6. Palm OS (Garnet OS)

The Palm OS is a proprietary mobile operating system (PDA operating system) that was

originally released in 1996 on the Pilot 1000 handheld. Newer versions of the Palm OS have

added support for expansion ports, new processors, external memory cards, improved security

and support for ARM processors and smartphones. Palm OS 5 was extended to provide support

for a broad range of screen resolutions, wireless connections and enhanced multimedia

capabilities and is called Garnet OS.
7. Symbian OS (Nokia)

Symbian is a mobile operating system (OS) targeted at mobile phones that offers a high-level of

integration with communication and personal information management (PIM) functionality.

Symbian OS combines middleware with wireless communications through an integrated mailbox

and the integration of Java and PIM functionality (agenda and contacts). Nokia has made the

Symbian platform available under an alternative, open and direct model, to work with some

OEMs and the small community of platform development collaborators. Nokia does not maintain

Symbian as an open source development project.
8. webOS (Palm/HP)

WebOS is a mobile operating system that runs on the Linux kernel. WebOS was initially

developed by Palm as the successor to its Palm OS mobile operating system. It is a proprietary

Mobile OS which was eventually acquired by HP and now referred to as webOS (lower-case w)

in HP literature. HP uses webOS in a number of devices including several smartphones and HP

TouchPads. HP has pushed its webOS into the enterprise mobile market by focusing on

https://www.webopedia.com/TERM/I/iPhone.html
https://www.webopedia.com/TERM/O/open_source.html
https://www.webopedia.com/TERM/P/personal_information_manager.html
https://www.webopedia.com/TERM/M/middleware.html
https://www.webopedia.com/TERM/L/Linux.html
https://www.webopedia.com/TERM/K/kernel.html
https://www.webopedia.com/TERM/H/HP.html

improving security features and management with the release of webOS 3.x. HP has also

announced plans for a version of webOS to run within the Microsoft Windows operating system

and to be installed on all HP desktop and notebook computers in 2012.
9. Windows Mobile (Windows Phone)

Windows Mobile is Microsoft's mobile operating system used in smartphones and mobile

devices – with or without touchscreens. The Mobile OS is based on the Windows CE 5.2 kernel.

In 2010 Microsoft announced a new smartphone platform called Windows Phone 7.

A n d r o i d P l a t f o r m

Android is based on Linux with a set of native core C/C++ libraries. Android applications are
written in Java. However, they run on Android's own Java Virtual Machine, called Dalvik
Virtual Machine (DVM) (instead of JDK's JVM) which is optimized to operate on the small and
mobile devices.

In May 2017, Google announced support for a new Kotlin programming language. As you are
familiar with Java, you probably should start in Java (many of the examples out there are written
in Java), and then move into Kotlin. Kotlin will not be discussed in this article.

ANDROID

What is android?

 Android is a mobile operating system developed by Google. It is based on a modified version

of the Linux Kernel and other open source software, and is designed primarily for touch screen

mobile devices such as smart phones and tablets.

History of Android?

 Initially, Andy Rubin founded Android Incorporation in Palo Alto, California, United States

in October, 2003.

 In 17th August 2005, Google acquired android Incorporation. Since then, it is in the

subsidiary of Google Incorporation.

 The Key employees of Android Incorporation are Andy Rubin, Rich Miner, Chris White and

Nick Sears.

 Originally intended for camera but shifted to smart phones later because of low market for

camera only.

 Android is the nick name of Andy Rubin given by coworkers because of his love to robots.

 In 2007, Google announces the developed of android OS.

 In 2008, HTC launched the first android mobile.

Features of Android operating System

 Near Field Communication (NFC)

 Alternate Keyboards

 Infrared Transmission

 No-Touch Control

 Automation

 Wireless App Downloads

 Storage and Battery Swap

 Custom Home Screen

 Widgets

 Custom ROMs

ANDROID VERSIONS

ANDROID
VERSIONS
NAME

APL
LEVEL

LINUX
KERNEL IN
(AOSP)

VERSION RELEASE FEATURES

No codename 1 1.0 - - -

Cupcake 3 2.6.27 1.5 2009 Support widgets,
search browsers
navigation apps,

Donut 4 2.6.29 1.6 2009 Screen capture,
voice commands

Éclair 5 2.6.29 2.1 2010 Battery savor,
enable in low
resolution
320*240
Keyboard auto-
correct

Froyo 8 2.6.32 2.2 2010 High security,
cloud API,
gesture detection.

Ginger-bread 9and10 2.6.35 2.3 2011 NFC range in 10
cm, audio video
calls, 3g
supported,
gyroscope
sensors

Honeycomb 11and13 2.6.36 3.1and3.3 2011 Symmetric
multiprocessor,
multitasking,
Google talk, 3D
effects

Ice cream
sandwich

14 3.0.1 4.0 2011 Notification pop
up on lock
screens, fast
image capture,
NFG enable.

Jelly bean 16 3.4.39 4.1,4.2,4.3 2012 Speedy, audio &
video calling,
remote access

Kitkat 19 3.10 4.4 2013 Responsive, tri
core cpu, cloud
response

Lollipop 21 3.16.1 5.0 2015 3D views, 64 bit
MIPS, Sensors,
heart rate, swipe
pinch. Screen
capture.

Marsh-mallow 23 3.18.10 6.0 2015 Finger Print
detection, gesture
& voice sensors

in camera, high
resolution,
backup in cloud,
power saving
mode

Nougat 25 4.4.1 7.0 2016 Finger print,
gestures voice
sensors, palm
detection. Power
saving modes,
cloud

Oreo 26-27 8.0 2017 Auto enable wifi,
smart text
selection, split
screen apps.

Pie 28 9 2018 Multi-camera
support, display
cutout support,
animation.

Android 10 29 10.0 2019 Smart Reply in
all messaging
apps, live
caption, new
parental controls,

PREREQUISITES ANDROID DEVELOPMENTR

 Java

 Understanding of XML

 Android SDK

 Android Studio

 APLS

 Databases

 Material Design

 SYSTEM REQUIREMENTS

Windows

 Microsoft® Windows® 7/8/10 (64-bit)

 4 GB RAM minimum, 8 GB RAM recommended

 2 GB of available disk space minimum,

4 GB Recommended (500 MB for IDE + 1.5 GB for Android SDK and emulator system image)

 1280 x 800 minimum screen resolution

Mac

 Mac® OS X® 10.10 (Yosemite) or higher, up to 10.14 (macOS Mojave)

 4 GB RAM minimum, 8 GB RAM recommended

 2 GB of available disk space minimum,

4 GB Recommended (500 MB for IDE + 1.5 GB for Android SDK and emulator system image)

 1280 x 800 minimum screen resolution

Linux

 GNOME or KDE desktop

Tested on gLinux based on Debian.

 64-bit distribution capable of running 32-bit applications

 GNU C Library (glibc) 2.19 or later

 4 GB RAM minimum, 8 GB RAM recommended

 2 GB of available disk space minimum,

4 GB Recommended (500 MB for IDE + 1.5 GB for Android SDK and emulator system image)

 1280 x 800 minimum screen resolution

Chrome OS

 8 GB RAM or more recommended

 4 GB of available disk space minimum

 1280 x 800 minimum screen resolution

 Intel i5 or higher (U series or higher) recommended

Recommended devices:

 Acer: Chromebook 13/Spin 13, Chromebox CXI3

 Lenovo: Yoga C630 Chromebook

 HP: Chromebook x360 14, Chromebox G2

 Dell: Inspiron Chromebook 14

 ASUS: Chromebox 3

 ViewSonic: NMP660 Chromebox

 CTL: Chromebox CBx1

ANDROID STUDIO INSTALLATION

https://abhiandroid.com/androidstudio/how-to-download-android-studio

Step 1 - System Requirements

You will be delighted, to know that you can start your Android application development on
either of the following operating systems −

 Microsoft® Windows® 10/8/7/Vista/2003 (32 or 64-bit)

 Mac® OS X® 10.8.5 or higher, up to 10.9 (Mavericks)

 GNOME or KDE desktop

Second point is that all the required tools to develop Android applications are open source and
can be downloaded from the Web. Following is the list of software's you will need before you
start your Android application programming.

 Java JDK5 or later version

 Java Runtime Environment (JRE) 6

 Android Studio

Step 2 - Setup Android Studio

Overview

Android Studio is the official IDE for android application development.It works based
on IntelliJ IDEA, You can download the latest version of android studio from Android Studio
Download, If you are new to installing Android Studio on windows,you will find a file, which is
named as android-studio-bundle-143.3101438-windows.exe.So just download and run on
windows machine according to android studio wizard guideline.

If you are installing Android Studio on Mac or Linux, You can download the latest version
from Android Studio Mac Download,or Android Studio Linux Download, check the

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
https://dl.google.com/dl/android/studio/install/1.1.0/android-studio-ide-135.1740770-mac.dmg
https://dl.google.com/dl/android/studio/install/1.1.0/android-studio-ide-135.1740770-mac.dmg
https://dl.google.com/dl/android/studio/ide-zips/1.1.0/android-studio-ide-135.1740770-linux.zip

instructions provided along with the downloaded file for Mac OS and Linux. This tutorial will
consider that you are going to setup your environment on Windows machine having Windows
operating system.

Installation

So let's launch Android Studio.exe,Make sure before launch Android Studio, Our Machine
should required installed Java JDK. To install Java JDK,take a references of Android
environment setup

Once you launched Android Studio, its time to mention JDK7 path or later version in android
studio installer.

https://www.tutorialspoint.com/android/android_environment_setup.htm

Below the image initiating JDK to android SDK

Need to check the components, which are required to create applications, below the image has
selected Android Studio, Android SDK, Android Virtual Machine and performance(Intel
chip).

Need to specify the location of local machine path for Android studio and Android SDK, below
the image has taken default location of windows 8.1 x64 bit architecture.

Need to specify the ram space for Android emulator by default it would take 512MB of local
machine RAM.

At final stage, it would extract SDK packages into our local machine, it would take a while time
to finish the task and would take 2626MB of Hard disk space.

After done all above steps perfectly, you must get finish button and it gonna be open android
studio project with Welcome to android studio message as shown below

You can start your application development by calling start a new android studio project. in a
new installation frame should ask Application name, package information and location of the
project.

After entered application name, it going to be called select the form factors your application
runs on, here need to specify Minimum SDK, in our tutorial, I have declared as API23: Android
6.0(Mashmallow)

The next level of installation should contain selecting the activity to mobile, it specifies the
default layout for Applications

At the final stage it going to be open development tool to write the application code.

Step 3 - Create Android Virtual Device

To test your Android applications, you will need a virtual Android device. So before we start
writing our code, let us create an Android virtual device. Launch Android AVD Manager
Clicking AVD_Manager icon as shown below

After Click on a virtual device icon, it going to be shown by default virtual devices which are
present on your SDK, or else need to create a virtual device by clicking Create new Virtual
device button

If your AVD is created successfully it means your environment is ready for Android application
development. If you like, you can close this window using top-right cross button. Better you re-
start your machine and once you are done with this last step, you are ready to proceed for your
first Android example but before that we will see few more important concepts related to
Android Application Development.

Hello Word Example

Before Writing a Hello word code, you must know about XML tags.To write hello word code,
you should redirect to App>res>layout>Activity_main.xml

To show hello word, we need to call text view with layout (about text view and layout, you
must take references at Relative Layout and Text View).

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent"
 android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin" tools:context=".MainActivity">

 <TextView android:text="@string/hello_world"
 android:layout_width="550dp"
 android:layout_height="wrap_content" />
</RelativeLayout>

Need to run the program by clicking Run>Run App or else need to call shift+f10key. Finally,
result should be placed at Virtual devices as shown below

https://www.tutorialspoint.com/android/android_relative_layout.htm
https://www.tutorialspoint.com/android/android_textview_control.htm

Integrated Development Environment (IDE)

An integrated development environment (IDE) is a software suite that consolidates basic

tools required to write and test software.

Developers use numerous tools throughout software code creation, building and testing.

Development tools often include text editors, code libraries, compilers and test platforms.

Without an IDE, a developer must select, deploy, integrate and manage all of these tools

separately. An IDE brings many of those development-related tools together as a single

framework, application or service.

XML in Android: Basics And Different XML Files Used In Android

XML stands for Extensible Markup Language. XML is a markup language much
like HTML used to describe data. XML tags are not predefined in XML. We must define our
own Tags. Xml as itself is well readable both by human and machine. Also, it is scalable and
simple to develop. In Android we use xml for designing our layouts because xml is lightweight
language so it doesn’t make our layout heavy.

In this article we will go through the basic concepts of xml in Android and different XML files
used for different purpose in Android. This will help you in writing a UI code to design your
desired user interface

Here in above Diagram ViewGroup (Linear Layout) contains one ViewGroup (i.e. Relative
Layout)and two View(Button and TextView). Further two more View (i.e. 2 EditText) are
nested inside Relative Layout ViewGroup. It is important to note that one layout can be nested in
another layout.

The below code snippet will explain the above image in better way. Paste it
in activity_main.xml:

<?xml version="1.0" encoding="utf-8"?>

https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/html/
https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/linear-layout
https://abhiandroid.com/ui/relative-layout
https://abhiandroid.com/ui/button
https://abhiandroid.com/ui/textview
https://abhiandroid.com/ui/edittext
https://abhiandroid.com/ui/relative-layout/

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical" android:layout_width="match_parent"

 android:layout_height="match_parent">

 <Button

 android:id="@+id/buton1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"/>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="sample Text"

 android:layout_marginTop="15dp"

 android:textSize="30dp"/>

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <EditText

 android:id="@+id/editTextName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:hint="First Name"

 />

 <EditText

 android:id="@+id/editTextLastName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:hint="Last Name"/>

 </RelativeLayout>

</LinearLayout>

Different XML Files Used in Android:

In Android there are several xml files used for several different purposes. Below we define each
and every one.

1. Layout XML Files: Layout xml files are used to define the actual UI(User interface) of our
application. It holds all the elements(views) or the tools that we want to use in our application.
Like the TextView’s, Button’s and other UI elements.

Location in Android Studio:

You will find out this file inside the res folder and inside it there is another folder
named layout where you will get all the layout files for their respective activities or fragments.

https://abhiandroid.com/ui/textview/
https://abhiandroid.com/ui/button/

Basic Layout XML Code:

Below we show activity_main.xml file in which we have two TextView’s.

<!-- RelativeLayout in which we set green color for the background -->

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:background="@color/greenColor"

tools:context=".MainActivity">

<TextView

android:id="@+id/firstTextView"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_margin="20dp"

https://abhiandroid.com/ui/textview/

android:padding="10dp"

android:text="First Text View"

android:textColor="@color/white"

android:textSize="20sp"

android:textStyle="bold" />

<!-- second TextView -->

<TextView

android:id="@+id/secondTextView"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_below="@+id/firstTextView"

android:layout_centerHorizontal="true"

android:layout_margin="20dp"

android:padding="10dp"

android:text="Second Text View"

android:textColor="@color/white"

android:textSize="20sp"

android:textStyle="bold" />

</RelativeLayout>

2. Manifest xml File(Mainfest.xml): This xml is used to define all the components of our
application. It includes the names of our application packages, our Activities, receivers, services
and the permissions that our application needs. For Example – Suppose we need to use internet

in our app then we need to define Internet permission in this file.

Location in Android Studio:

It is located inside app > manifests folder

Defining Internet Permission in AndroidManifest.xml

Below we show the AndroidManifest.xml file and define the Internet Permission in that file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="example.abhiandroid.MyApplication"> <!-- application package name -->

<uses-permission android:name="ANDROID.PERMISSION.INTERNET" />

<!-- define Internet Permission -->

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme">

<!-- add your Activities, Receivers, Services Names Here -->

<activity

android:name=".MainActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

3. Strings xml File(strings.xml): This xml file is used to replace the Hard-coded strings with a
single string. We define all the strings in this xml file and then access them in our app(Activity
or in Layout XML files) from this file. This file enhance the reusability of the code.

Location in Android Studio:

Below we show strings.xml file and define a string in the file.

<resources>

<string name="app_name">My Application</string>

<string name="hello_world">Hello world!</string>

<string name="action_settings">Settings</string>

<string name="login">User Login</string>

<!-- define your strings here -->

</resources>

4. Styles xml File(styles.xml): This xml is used to define different styles and looks for the
UI(User Interface) of application. We define our custom themes and styles in this file.

Location in Android Studio:

Below we show the style.xml file.

<resources>

<!-- Base application theme. -->

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

<!-- Customize your theme here. -->

</style>

</resources>

5. Drawable xml Files: These are those xml files that are used to provide various graphics to the
elements or views of application. When we need to create a custom UI we use drawable xml
files. Suppose if we need to define a gradient color in the background of Button or any custom
shape for a view then we create a Drawable xml file and set it in the background of View.

Do Read: How To Create Drawable Resource XML File in Android Studio

Below we show custom_drawable.xml file and create a gradient background color using style
attribute.

<?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android">

<!-- define start, center and end color for gradient -->

<gradient

android:centerColor="#0f0"

android:endColor="#00f"

android:startColor="#f00" />

</shape>

6. Color xml File (colors.xml): This file is used to define the color codes that we used in our
app. We simply define the color’s in this file and used them in our app from this file.

Location in Android Studio

https://abhiandroid.com/ui/button/
https://abhiandroid.com/androidstudio/how-to-create-drawable-resource-xml-file-in-android-studio
https://abhiandroid.com/androidstudio/how-to-create-drawable-resource-xml-file-in-android-studio
https://abhiandroid.com/androidstudio/how-to-create-drawable-resource-xml-file-in-android-studio
https://abhiandroid.com/androidstudio/how-to-create-drawable-resource-xml-file-in-android-studio
https://abhiandroid.com/androidstudio/how-to-create-drawable-resource-xml-file-in-android-studio

Below we show the colors.xml file in which we define green and white color.

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- define your colors Here -->

<color name="greenColor">#0f0</color>

<color name="white">#fff</color>

</resources>

7. Dimension xml File(dimens.xml): This xml file is used to define the dimensions of the
View’s. Suppose we need a Button with 50dp(density pixel) height then we define the value
50dp in dimens.xml file and then use it in our app from this file.

stom themes and styles in this file.

Location in Android Studio:

Below we show the dimens.xml file in which we define 50dp dimension for Button height.

<resources>

<!-- Default screen margins, per the Android Design guidelines. -->

<dimen name="activity_horizontal_margin">16dp</dimen>

<dimen name="activity_vertical_margin">16dp</dimen><dimen
name="btnheight">50dp</dimen>

</resources>

.

CREATING AVD
If you want to emulate a real device, first crate an AVD with the same device configurations as

real device, then launch this AVD from AVD manager.

Changing Orientation

Usually by default when you launch the emulator, its orientation is vertical, but you can change

it orientation by pressing Ctrl+F11 key from keyboard.

First launch the emulator. It is shown in the picture below −

Once it is launched, press Ctrl+F11 key to change its orientation. It is shown below −

3.4.4 Emulator Commands.

Apart from just orientation commands, there are other very useful commands of emulator that

you should keep in mind while using emulator. They are listed below −

Sr.No Command & description

1 Home
Shifts to main screen

2 F2
Toggles context sensitive menu

3 F3
Bring out call log

4 F4
End call

5 F5

Search

6 F6
Toggle trackball mode

7 F7
Power button

8 F8
Toggle data network

9 Ctrl+F5
Ring Volume up

10 Ctrl+F6
Ring Volume down

3.4.5 Emulator - Sending SMS

You can emulate sending SMS to your emulator. There are two ways to do that. You can do that

from DDMS which can be found in Android studio, or from Telnet.(Network utility found in

windows).

Sending SMS through Telnet.

Telnet is not enabled by default in windows. You have to enable it to use it. Once enabled you

can go to command prompt and start telnet by typing telnet.

In order to send SMS , note down the AVD number which can be found on the title bar of the

emulator. It could be like this 5554 e.t.c. Once noted , type this command in command prompt.

telnet localhost 5554

Press enter when you type the command. It is shown below in the figure.

You will see that you are now connected to your emulator. Now type this command to send

message.

sms send 1234 "hello"

Once you type this command , hit enter. Now look at the AVD. You will receive a notification

displaying that you got a new text message. It is shown below −

Emulator - Making Call

You can easily make phone calls to your emulator using telent client. You need to connect to

your emulator from telnet. It is discussed in the sending sms topic above.

After that you will type this command in the telent window to make a call. Its syntax is given

below −

gsm call 1234

Once you type this command , hit enter. Now look at the AVD. You will receive a call from the

number your put in the command. It is shown below −

Emulator - Transferring files

You can easily transfer files into the emulator and vice versa. In order to do that, you need to

select the DDMS utility in Android studio. After that select the file explorer tab. It is shown

below −

Browse through the explorer and make new folder, view existing contents.

Android Architecture
Android architecture is a software stack of components to support mobile device needs.

Android software stack contains a Linux Kernel, collection of c/c++ libraries which are exposed
through an application framework services, runtime, and application.

Following are main components of android architecture those are

1. Applications

2. Android Framework

3. Android Runtime

4. Platform Libraries

5. Linux Kernel

In these components, the Linux Kernel is the main component in android to provide its
operating system functions to mobile and Dalvik Virtual Machine (DVM) which is responsible
for running a mobile application.

Following is the pictorial representation of android architecture with different components

Applications

The top layer of the android architecture is Applications. The native and third-party applications
like contacts, email, music, gallery, clock, games, etc. whatever we will build those will be
installed on this layer only.
The application layer runs within the Android run time using the classes and services made
available from the application framework.

Application Framework

The Application Framework provides the classes used to create Android applications. It also
provides a generic abstraction for hardware access and manages the user interface and
application resources. It basically provides the services through which we can create a particular
class and make that class helpful for the Application creation.

The application framework includes services like telephony service, location services,
notification manager, NFC service, view system, etc. which we can use for application
development as per our requirements.

Android Runtime

Android Runtime environment is an important part of Android rather than an internal part and it
contains components like core libraries and the Dalvik virtual machine. The Android run time
is the engine that powers our applications along with the libraries and it forms the basis for the
application framework.

Dalvik Virtual Machine (DVM) is a register-based virtual machine like Java Virtual Machine
(JVM). It is specially designed and optimized for android to ensure that a device can run multiple
instances efficiently. It relies on the Linux kernel for threading and low-level memory
management.

The core libraries in android runtime will enable us to implement android applications using
standard JAVA programming language.

Platform Libraries

The Platform Libraries includes various C/C++ core libraries and Java-based libraries such as
SSL, libc, Graphics, SQLite, Webkit, Media, Surface Manger, OpenGL, etc. to provide support
for Android development.

The following are the summary details of some core android libraries available for android
development.

 Media library for playing and recording audio and video formats

 The Surface manager library to provide a display management

 SGL and OpenGL Graphics libraries for 2D and 3D graphics

 SQLite is for database support and FreeType for font support

 Web-Kit for web browser support and SSL for Internet security.

Linux Kernel

Linux Kernel is a bottom layer and heart of the android architecture. It manages all the drivers
such as display drivers, camera drivers, Bluetooth drivers, audio drivers, memory drivers, etc.
which are mainly required for the android device during the runtime.

The Linux Kernel will provide an abstraction layer between the device hardware and the
remainder of the stack. It is responsible for memory management, power management, device
management, resource access, etc.

	Requirements

