
SOFTWARE PROJECT MANAGENTSOFTWARE PROJECT MANAGENT

Unit 3

1

Unit 3 - Syllabus

� Technical Metrics For Software-Software Process and Project
Metrics- Size Oriented Metrics- Function-Oriented Metrics-Metrics- Size Oriented Metrics- Function-Oriented Metrics-
Extended Function Point Metrics. A Framework for Technical
Software Metrics- Metrics for Requirement Specification Quality-
Metrics for Analysis- Metrics for Design- Metrics for Source
Code- Metrics for Testing- Metrics for Maintenance.

(Chapter 4 – Software Engineering , Roger S Pressman)

� Technical Metrics For Object-Oriented Systems-Intent of� Technical Metrics For Object-Oriented Systems-Intent of
Object-Oriented Metrics- Characteristics of Object-Oriented Metrics
- Metrics for OO Design Model- Class-Oriented Metrics- Operation-
Oriented Metrics- Metrics for Object-Oriented Testing- Metrics for
Object-Oriented Projects.

(Chapter 24 – Software Engineering , Roger S Pressman)

2

Software Metrics - Definition

� A software metric is a standard of measure of a � A software metric is a standard of measure of a
degree to which a software system or process
possesses some property.

� The goal is obtaining quantitative measurements to
objective, reproducible and quantifiable
measurements, which may have numerous valuable
applications in schedule and budget planning, cost applications in schedule and budget planning, cost
estimation, quality assurance, testing, software
debugging, software performance optimization, and
optimal personnel task assignments.

3
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Reference : https://en.wikipedia.org/wiki/Software_metric

A Good Manager Measures

processprocessprocessprocess

measurementmeasurement

What do weWhat do we

project metricsproject metrics

process metricsprocess metrics

productproduct

product metricsproduct metrics

4
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

What do weWhat do we
use as ause as a
basis?basis?
• • size?size?
• • function?function?

productproduct

Why Do We Measure?

� assess the status of an ongoing project� assess the status of an ongoing project

� track potential risks

� uncover problem areas before they go
“critical,”

� adjust work flow or tasks,

� evaluate the project team’s ability to
control quality of software work products.

5
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

control quality of software work products.

Metrics

� Metrics is a quantitative measure of the � Metrics is a quantitative measure of the
degree to which a system, component, or
process possesses a given attribute.

� Measures, Metrics, and Indicators : An
indicator is a metric or combination of metrics
that provide insight into the software process, a
software project, or the product itself.software project, or the product itself.

6
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Need for Software Metrics

� in order to

Gain an understanding of processes, products, resources, and � Gain an understanding of processes, products, resources, and
environments.

� Establish baselines for comparisons with future assessments

� To evaluate in order to :

� Determine status with respect to plans

� To predict in order to

Gain understanding of relationships among processes and products.� Gain understanding of relationships among processes and products.

� Build models of these relationships

� To improve in order to

� Identify roadblocks, root causes, inefficiencies, and other
opportunities for improving product quality and process performance.

7
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Process Measurement
� We measure the efficacy of a software process We measure the efficacy of a software process

indirectly.
� That is, we derive a set of metrics based on the

outcomes that can be derived from the process.

� Outcomes include
• measures of errors uncovered before release of the

software

• defects delivered to and reported by end-users

• work products delivered (productivity)

• human effort expended

8
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

• human effort expended

• calendar time expended

• schedule conformance

• other measures.

� We also derive process metrics by measuring the
characteristics of specific software engineering tasks.

Process Metrics Guidelines

� Use common sense and organizational sensitivity when
interpreting metrics data.interpreting metrics data.

� Provide regular feedback to the individuals and teams who
collect measures and metrics.

� Don’t use metrics to appraise individuals.

� Work with practitioners and teams to set clear goals and
metrics that will be used to achieve them.

� Never use metrics to threaten individuals or teams.

� Metrics data that indicate a problem area should not be
considered “negative.” These data are merely an indicator for

9
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

considered “negative.” These data are merely an indicator for
process improvement.

� Don’t obsess on a single metric to the exclusion of other
important metrics.

Software Process Improvement

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations

10
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Process Metrics
� Quality-related

focus on quality of work products and deliverables� focus on quality of work products and deliverables

� Productivity-related
� Production of work-products related to effort expended

� Statistical SQA data
� error categorization & analysis

� Defect removal efficiency
� propagation of errors from process activity to activity

� Reuse data

11
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Reuse data
� The number of components produced and their degree

of reusability

Project Metrics

� used to minimize the development schedule by making the
adjustments necessary to avoid delays and mitigate adjustments necessary to avoid delays and mitigate
potential problems and risks

� used to assess product quality on an ongoing basis and,
when necessary, modify the technical approach to improve
quality.

� every project should measure:

� inputs—measures of the resources (e.g., people, tools)
required to do the work.

12
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� outputs—measures of the deliverables or work products
created during the software engineering process.

� results—measures that indicate the effectiveness of the
deliverables.

Typical Project Metrics

� Effort/time per software engineering task� Effort/time per software engineering task

� Errors uncovered per review hour

� Scheduled vs. actual milestone dates

� Changes (number) and their
characteristics

� Distribution of effort on software

13
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Distribution of effort on software
engineering tasks

Metrics Guidelines
� Use common sense and organizational sensitivity when

interpreting metrics data.interpreting metrics data.

� Provide regular feedback to the individuals and teams
who have worked to collect measures and metrics.

� Don’t use metrics to appraise individuals.

� Work with practitioners and teams to set clear goals and
metrics that will be used to achieve them.

� Never use metrics to threaten individuals or teams.

� Metrics data that indicate a problem area should not be

14
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Metrics data that indicate a problem area should not be
considered “negative.” These data are merely an indicator
for process improvement.

� Don’t obsess on a single metric to the exclusion of other
important metrics.

Types of Metrics

� Size Oriented Metrics� Size Oriented Metrics

� Function Oriented Metrics

� Object Oriented Metrics

15
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Size Oriented Metrics

� Size Oriented Metrics derived by normalizing quality � Size Oriented Metrics derived by normalizing quality
and productivity Point Metrics measures by considering
size of the software that has been produced. The
organization builds a simple record of size measure for
the software projects. It is built on past experiences of
organizations. It is a direct measure of software.

� This metrics is one of simplest and earliest metrics that This metrics is one of simplest and earliest metrics that
is used for computer program to measure size. Size
Oriented Metrics are also used for measuring and
comparing productivity of programmers. It is a direct
measure of a Software. The size measurement is
based on lines of code computation. The lines of code
are defined as one line of text in a source file. 16
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Typical Size-Oriented Metrics

� errors per KLOC (thousand lines of code)errors per KLOC (thousand lines of code)

� defects per KLOC

� $ per LOC

� pages of documentation per KLOC

� errors per person-month

� errors per review hour

� LOC per person-month

� $ per page of documentation

17
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� $ per page of documentation

Typical Function-Oriented Metrics

� errors per FP (thousand lines of � errors per FP (thousand lines of
code)

� defects per FP

� $ per FP

� pages of documentation per FP

� FP per person-month

18
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Comparing LOC and FP
Programming LOC per Function point

Language avg. median low highLanguage avg. median low high

Ada 154 - 104 205

Assembler 337 315 91 694
C 162 109 33 704
C++ 66 53 29 178

COBOL 77 77 14 400
Java 63 53 77 -

JavaScript 58 63 42 75

Perl 60 - - -
PL/1 78 67 22 263
Powerbuilder 32 31 11 105
SAS 40 41 33 49
Smalltalk 26 19 10 55

19
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

Smalltalk 26 19 10 55
SQL 40 37 7 110

Visual Basic 47 42 16 158

Representative values developed by QSM

Why Opt for FP?

� Programming language independent� Programming language independent

� Used readily countable characteristics that
are determined early in the software process

� Does not “penalize” inventive (short)
implementations that use fewer LOC that
other more clumsy versions

� Makes it easier to measure the impact of

20
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Makes it easier to measure the impact of
reusable components

Object-Oriented Metrics

� Number of scenario scripts (use-cases)� Number of scenario scripts (use-cases)

� Number of support classes (required to
implement the system but are not
immediately related to the problem domain)

� Average number of support classes per key
class (analysis class)

� Number of subsystems (an aggregation of

21
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Number of subsystems (an aggregation of
classes that support a function that is visible
to the end-user of a system)

WebApp Project Metrics

� Number of static Web pages (the end-user has no control over
the content displayed on the page)the content displayed on the page)

� Number of dynamic Web pages (end-user actions result in
customized content displayed on the page)

� Number of internal page links (internal page links are pointers
that provide a hyperlink to some other Web page within the
WebApp)

� Number of persistent data objects

� Number of external systems interfaced

22
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Number of external systems interfaced

� Number of static content objects

� Number of dynamic content objects

� Number of executable functions

Measuring Quality

� Correctness — the degree to which a program � Correctness — the degree to which a program
operates according to specification

� Maintainability—the degree to which a program
is amenable to change

� Integrity—the degree to which a program is
impervious to outside attack

� Usability—the degree to which a program is

23
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Usability—the degree to which a program is
easy to use

Defect Removal Efficiency

where:

E is the number of errors found before
delivery of the software to the end-user

DRE = E /(E + D)

24
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

D is the number of defects found after
delivery.

Metrics for Small Organizations

� time (hours or days) elapsed from the time a request is
made until evaluation is complete, t .made until evaluation is complete, tqueue.

� effort (person-hours) to perform the evaluation, Weval.

� time (hours or days) elapsed from completion of
evaluation to assignment of change order to personnel,
teval.

� effort (person-hours) required to make the change,
Wchange.

25
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

change

� time required (hours or days) to make the change, tchange.

� errors uncovered during work to make change, Echange.

� defects uncovered after change is released to the
customer base, Dchange.

Establishing a Metrics Program
� Identify your business goals.

� Identify what you want to know or learn.� Identify what you want to know or learn.

� Identify your subgoals.

� Identify the entities and attributes related to your subgoals.

� Formalize your measurement goals.

� Identify quantifiable questions and the related indicators that
you will use to help you achieve your measurement goals.

� Identify the data elements that you will collect to construct
the indicators that help answer your questions.

� Define the measures to be used, and make these definitions

26
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

� Define the measures to be used, and make these definitions
operational.

� Identify the actions that you will take to implement the
measures.

� Prepare a plan for implementing the measures.

OBJECT ORIENTED METRICS

27
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

3.1 Introduction to OO
Metrics

� OO metrics have been introduced to help a� OO metrics have been introduced to help a
software engineer use quantitative analysis to
assess the quality of the design before a
system is built.

� The focus of OO metrics is on the class—the
fundamental building block of the OO
architecture.architecture.

� Software engineers use OO metrics to help
them build higher-quality software.

28

3.2 Technical Metrics For

Object-Oriented Systems

Goals for Using Object-Oriented Metrics� Goals for Using Object-Oriented Metrics

� To better understand product quality

� To assess process effectiveness

� To improve quality of the work performed at the project level

29

3.2.1 Steps in Measuring
OO

� Step 1: The measurement process is to derive � Step 1: The measurement process is to derive
the software measures and metrics that are
appropriate for the representation of software
that is being considered.

� Step 2: Once computed, appropriate metrics
are analyzed based on pre-established
guidelines and past data. guidelines and past data.

� Step 3 : The results of the analysis are
interpreted to gain insight into the quality of the
software, and the results of the interpretation
lead to modification of work products arising
out of analysis, design, code, or test.

30

3.3 Object-Oriented

Metrics

� Number of scenario scripts (use-cases)

� Number of support classes (required to implement
the system but are not immediately related to the
problem domain)

� Average number of support classes per key class
(analysis class)

� Number of subsystems (an aggregation of classes

31

� Number of subsystems (an aggregation of classes
that support a function that is visible to the end-user
of a system)

� Localization - OO metrics need to apply to the class as a whole
and should reflect the manner in which classes collaborate with

3.4 Characteristics of OO Metrics

and should reflect the manner in which classes collaborate with
one another

� Encapsulation - OO metrics chosen need to reflect the fact that
class responsibilities, attributes, and operations are bound as a
single unit

� Information hiding -OO metrics should provide an indication of
the degree to which information hiding has been achievedthe degree to which information hiding has been achieved

� Inheritance - OO metrics should reflect the degree to which
reuse of existing classes has been achieved (number of children ,

number of parents , and class hierarchy nesting level)

� Abstraction - OO metrics represent abstractions in terms of
measures of a class (e.g. number of instances per class per
application)

32

� Size(population, volume, length, functionality)

3.5 OO Design Model Metrics

� Complexity (how classes interrelate to one another)

� Coupling (physical connections between design elements)

� Sufficiency (how well design components reflect all
properties of the problem domain)

� Completeness (coverage of all parts of problem domain)

� Cohesion (manner in which all operations work together)� Cohesion (manner in which all operations work together)

� Primitiveness (degree to which attributes and operations
are atomic)

� Similarity (degree to which two or more classes are alike)

� Volatility (likelihood a design component will change)
33

Class is often the “parent” for subclasses (sometimes called

3.6 Class Oriented Metrics

Class is often the “parent” for subclasses (sometimes called
children) that inherit its attributes and operations.

Measures and metrics for an individual class, the class
hierarchy, and class collaborations are required to design
quality.

Class Oriented Metrics Suites

1. Chidamber and Kemerer (CK) Metrics Suite

2. Metrics Proposed by Lorenz and Kidd

3. The MOOD Metrics Suite
34

� Most widely referenced sets of OO software metrics

3.6.1 Chidamber and Kemerer (CK)

Metrics Suite

� Most widely referenced sets of OO software metrics
has been proposed by Chidamber and Kemerer
often referred as the CK metrics suite.

� CK Metrics : Six class-based design metrics.
1. Weighted metrics per class (WMC)
2. Depth of inheritance tree (DIT) - the maximum length

from the node to the root of the treefrom the node to the root of the tree
3. number of children (NOC)
4. coupling between object classes (CBO)
5. response for a class(RFC) - a set of methods that can

potentially be executed in response to a message received
by an object of that class

6. lack of cohesion in methods (LCOM)
35

Weighted methods per class

for i = 1 to n.

36

for i = 1 to n.

The number of methods and their complexity are

reasonable indicators

of the amount of effort required to implement and

test a class.

Number of classess

37

C2 has three children—subclasses C21, C22, and C23.

As the number of children grows, reuse increases but also,
as NOC increases, the abstraction represented by the parent
class can be diluted.

Class-based metrics into four broad categories: size,

3.6.2 Lorenz and Kidd Metrics

inheritance, internals, and externals.

1. Class size (CS)

� The total number of operations (both inherited and private instance
operations) that are encapsulated within class.

� The number of attributes (both inherited and private instance
attributes) that are encapsulated by the class.

2. number of operations overridden by a subclass (NOO)2. number of operations overridden by a subclass (NOO)

3. number of operations added by a subclass (NOA)

4. specialization index (SI)

� indication of the degree of specialization for each of the subclasses
in an OO system

38

3.6.3 MOOD Metrics

� Harrison, Counsell, and Nithi proposed a set of metrics for � Harrison, Counsell, and Nithi proposed a set of metrics for
object-oriented design that provide quantitative indicators
for OO design characteristics.
1. Method Inheritance Factor (MIF)

• degree to which the class architecture of an OO
system makes use of inheritance for both methods
(operations) and attributes(operations) and attributes

2. Coupling Factor (CF)

3. Polymorphism Factor (PF)
• The number of methods that redefine inherited
methods, divided by the maximum number of possible
distinct polymorphic situations 39

� Operation Oriented Metrics : Metrics for operations that

3.7 Operation Oriented Metrics

� Operation Oriented Metrics : Metrics for operations that
reside within a class.

1. Average operation size (OSavg)
� the number of messages sent by the operation provides an

alternative for operation size

2. Operation complexity (OC)2. Operation complexity (OC)

3. Average number of parameters per operation (NPavg)
� The larger the number of operation parameters, the more

complex the collaboration between objects.

40

� Binder suggests a broad array of design metrics that have

3.8 Object Oriented Testing Metrics

� Binder suggests a broad array of design metrics that have
a direct influence on the “testability” of an OO system.

1. Encapsulation
� lack of cohesion in methods (LCOM)
� percent public and protected (PAP)
� public access to data members(PAD)

2. Inheritance
� number of root classes (NOR)� number of root classes (NOR)
� fan in (FIN)
� number of children (NOC) and depth of inheritance tree (DIT)

41

� A software team can use software project metrics to adapt
project workflow and technical activities.

3.9 Metrics for OO Projects

project workflow and technical activities.

� Project metrics are used to avoid development schedule delays,
to mitigate potential risks, and to assess product quality on an
on-going basis.

� Size is directly proportional to effort and duration. The following

OO metrics can provide insight into software size:

1. Number of scenario scripts (NSS). 1. Number of scenario scripts (NSS).

2. Number of key classes (NKC).

3. (Number of subsystems (NSUB).

� Every project should measure its
• inputs (resources),

• outputs (deliverables), and

• results (effectiveness of deliverables). 42

Chapter 25

� Process and Project Metrics

Reference: Software Engineering: A Practitioner’s Approach, 7/e

by Roger S. Pressman

� Process and Project Metrics

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

43
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

References

Software Engineering –
A Practitioner’s Approach – 7th ed

By
Roger S Pressman

44

