
Programming in C#
Unit-4

21-12,2020, 23-12-2020, 26-12-2020,

28-12-2020, 04-01-2021,06-1-2021

Dr.M. Paul Arokiadass Jerald
1

Dr.M.Paul Arokiadass Jerald
Assistant Professor

Department of Computer Science

Periyar Arts College, Cuddalore-1

Syllabus Overview

UNIT - IV: REFLECTION AND REMOTING

� Life Cycle of threads

� Using Reflection – Reflecting the Members of a Class -

Dynamic Loading and Reflection

2

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� .NET Remoting – Architecture – Hosting of Objects –

Single Ton and Single Call – Remoting Server –

Remoting Client.

4.1 Multi-Threading

� Threading means parallel code execution.

� Multi-threading is the most useful feature of C#

which allows concurrent

programming(execution) of two or more parts of

the program for maximizing the utilization of the

3

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

the program for maximizing the utilization of the

CPU.

� Each part of a program is called Thread.

� Namespace : System.Threading

� Assembly : System.Threading.Thread.dll

Types of Thread

C# supports two types of threads :

1. Foreground Thread

� thread which keeps on running to complete its work even if

the Main thread leaves its process.

� Foreground thread does not care whether the main thread

4

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� Foreground thread does not care whether the main thread

is alive or not, it completes only when it finishes its assigned

work.

� Life of the foreground thread does not depend upon the

main thread.

Types of Thread

2. Background Thread

� A thread which leaves its process when the Main

method leaves its process.

� Life of the background thread depends upon the

life of the main thread.

5

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

life of the main thread.

� If the main thread finishes its process, then

background thread also ends its process.

� Note: To use a background thread in your

program, then set the value of IsBackground

property of the thread to true.

Life Cycle of a Thread

� A thread in C# at any point of time exists in any

one of the following states :

■ Unstarted

■ Runnable

6

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ Running

■ Not Runnable

■ Dead

Life Cycle of a Thread

� A thread in C# at any point of time exists in any

one of the following states.

� A thread lies only in one of the shown states :

■ Unstarted

7

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ Runnable

■ Running

■ Not Runnable

■ Dead

Life Cycle of a Thread

� A thread in C# at any point of time exists in any

one of the following states.

� A thread lies only in one of the shown states :

■ Unstarted

8

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ Runnable

■ Running

■ Not Runnable

■ Dead

Flowchart of a Thread Life
cycle

9

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Life Cycle of a Thread =

� Unstarted state: When an instance of a Thread class

is created, it is in the unstarted state, means the thread

has not yet started to run when the thread is in this state.

� Or in other words Start() method is not called.

Thread thr = new Thread();

10

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Thread thr = new Thread();

Here, thr is at unstarted state.

� Runnable State: A thread that is ready to run is moved

to runnable state. In this state, a thread might actually be

running or it might be ready to run at any instant of time.

� It is the responsibility of the thread scheduler to give the

thread, time to run. the Start() method is called.

Life Cycle of a Thread =

� Running State: A thread that is running. Or in

other words, the thread gets the processor.

� Not Runnable State: A thread that is not

executable because

Sleep() method is called.

11

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� Sleep() method is called.

� Wait() method is called.

� Due to I/O request.

� Suspend() method is called.

� Dead State: When the thread completes its task,

then thread enters into dead, terminates, abort

state.

Methods to implement Thread

� Thread class provides different types of methods

to implement the states of the threads :

� Sleep() method is used to temporarily suspend

the current execution of the thread for specified

milliseconds, so that other threads can get the

12

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

milliseconds, so that other threads can get the

chance to start the execution

� Join() method is used to make all the calling

thread to wait until the main thread, i.e. joined

thread complete its work.

� Abort() method is used to abort the thread.

Methods to implement Thread

� Suspend() method is called to suspend the

thread.

� Resume() method is called to resume the

suspended thread.

Start() method is used to send a thread into

13

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� Start() method is used to send a thread into

runnable State.

Example – Life Cycle

// C# program for states of thread

using System;

using System.Threading;

public class MyThread

{

public void thread()

{

for (int x = 0; x < 2; x++)

// Creating and initializing

// threads Unstarted state

Thread thr1 = new Thread(new

ThreadStart(obj.thread));

Console.WriteLine("ThreadState: {0}",

thr1.ThreadState);

// Running state

thr1.Start();

14

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

{

Console.WriteLine("My Thread");

}

}

}

public class ThreadExample {

// Main method

public static void Main()

{ // Creating instance for

// mythread() method

MyThread obj = new MyThread();

Console.WriteLine("ThreadState: {0}",

thr1.ThreadState);

// thr1 is in suspended state

thr1.Suspend();

Console.WriteLine("ThreadState: {0}",

thr1.ThreadState);

// thr1 is resume to running state

thr1.Resume();

Console.WriteLine("ThreadState: {0}",

thr1.ThreadState);

}

}

4.2 Reflection

� Reflection objects are used for obtaining

metadata (information) at runtime.

� The classes that give access to the metadata of a

running program are in

System.Reflection namespace.

15

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

System.Reflection namespace.

� The System.Reflection namespace contains

classes that allow you to obtain information about

the application and to dynamically add types,

values, and objects to the application.

� Reflection in C# is similar to RTTI (Runtime Type

Information) of C++.

Applications of Reflection

� Reflection has the following applications −

■ It allows view attribute information at runtime.

■ It allows examining various types in an assembly and

instantiate these types.

It allows late binding to methods and properties

16

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ It allows late binding to methods and properties

■ It allows creating new types at runtime and then

performs some tasks using those types.

Types defined in Metadata

� classes (class);

� interfaces (interface);

� structures (struct);

� enumerations (enum);

17

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� delegates (delegate).

Applications of Reflection

� Reflection has the following applications −

■ It allows view attribute information at runtime.

■ It allows examining various types in an assembly and

instantiate these types.

It allows late binding to methods and properties

18

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ It allows late binding to methods and properties

■ It allows creating new types at runtime and then

performs some tasks using those types.

System.Reflection Namespace

19

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Types in System.Reflection namespace

� Assembly – abstract class. It contains static methods

for working with the assembly.

� AssemblyName – this is a class that contains

information that is used to identify the assembly. For

example: the version number of the assembly,

20

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

example: the version number of the assembly,

information about the culture, etc.;

� EventInfo – abstract class. Contains information

about a specified event;

� FieldInfo – abstract class. It can contain information

about the specified data members of the class;

Types in System.Reflection namespace

� MemberInfo – abstract class. Contains general behavior

information for classes

(types) EventInfo, FieldInfo, MethodInfo and PropertyInfo;

� MethodInfo – abstract class. Contains information about

specified method;

21

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

specified method;

� Module – abstract class. It allows to get information about

a given module in the case of a multi-file assembly;

� ParameterInfo – a class that contains information about

a given parameter in a given method;

� PropertyInfo – abstract class. It contains information

about the specified property.

22

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

https://www.c-sharpcorner.com/UploadFile/keesari_anjaiah/reflection-in-net/

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

// connect the System.Reflection namespace

using System.Reflection;

namespace TrainReflection1

{ class MathFunctions

Example

for

Reflection

23

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

{ class MathFunctions

{

public int a, b, c; // data members of class

// minimum between two values

public int Min2(int a, int b)

{ if (a < b) return a;

return b;

}

// minimum between three values

public int Min3(int a, int b, int c)

{

int min = a;

if (min > b) min = b;

if (min > c) min = c;

return min;

}

// maximum between two values

24

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

// maximum between two values

public int Max2(int a, int b)

{

if (a < b) return b;

return a;

}

}

class Program

{ static void Main(string[] args)

{

// get the value of the type

Type tp = null;

tp = Type.GetType("TrainReflection1.MathFunctions");

// get a list of methods from the MathFunctions

class

MethodInfo[] mi = tp.GetMethods();

// get the names of methods

25

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

// get the names of methods

string m1 = mi[0].Name; // m1 = "Min2"

string m2 = mi[1].Name; // m2 = "Min3"

string m3 = mi[2].Name; // m3 = "Max2"

// get a list of internal class data

FieldInfo[] fi = tp.GetFields();

string f1 = fi[0].Name; // f1 = "a"

string f2 = fi[1].Name; // f2 = "b"

string f3 = fi[2].Name; // f3 = "c"

Console.WriteLine("Method1 = {0}", m1); // Method1 = Min2

Console.WriteLine("Method2 = {0}", m2); // Method2 = Min3

Console.WriteLine("Method3 = {0}", m3); // Method3 = Max2

Console.WriteLine("Field1 = {0}", f1); // Field1 = a

Console.WriteLine("Field2 = {0}", f2); // Field2 = b

Console.WriteLine("Field3 = {0}", f3); // Field3 = c

Console.WriteLine("\nDetails about Object");

Type t = typeof(string);

26

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Type t = typeof(string);

Console.WriteLine("Name : {0}", t.Name);

Console.WriteLine("Full Name : {0}", t.FullName);

Console.WriteLine("Namespace : {0}", t.Namespace);

Console.WriteLine("Base Type : {0}", t.BaseType);

Console.ReadKey();}

}

}

Reflection of Methods

� Reflection of methods allows to obtain information

about the list of public methods of a given type.

Information about methods can be obtained for a

class, structure, or interface.

To get the list of methods of a given type

27

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� To get the list of methods of a given type

instance, GetMethods() method is used.

� GetMethods() returns an array of type

MethodInfo, which contains all the necessary

information about the methods.

Reflection on fields of a class,
structure or enumeration

� To get information about a field (property) of a

particular type (class, structure, enumeration),

use the Type.GetFields() method.

� Type.GetFields() method returns an array of type

FieldInfo.

28

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

FieldInfo.

� The FieldInfo type contains all the necessary

information about the fields and properties that

are declared as public.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Reflection;

namespace ConsoleApp2

{ // class, which defines a date

public class Date

{ int number;

int month;

Example – Reflection of Methods

29

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

int month;

int year;

// access methods

public int GetNumber() { return number; }

public int GetMonth() { return month; }

public int GetYear() { return year; }

public void SetNumber(int nnumber) { number = nnumber; }

public void SetMonth(int nmonth) { month = nmonth; }

public void SetYear(int nyear) { year = nyear; }

}

class Program

{ static void Main(string[] args)

{

// get information about methods

// get an instance of the type by its name

Type tp = Type.GetType("ConsoleApp2.Date");

// class name "Date" in the assembly ConsoleApp2

// get an array of class Date methods

MethodInfo[] methods = tp.GetMethods();

Example – Reflection of Methods

30

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

MethodInfo[] methods = tp.GetMethods();

// display the method names

int i = 0;

foreach (MethodInfo mi in methods)

{ i++;

Console.WriteLine("Method[{0}] = {1}", i, mi.Name);

}

} }

}

4.3 DYNAMIC LOADING

� The act of loading external assemblies on

demand is known as Dynamic Loading.

� Using the Assembly class, we can dynamically

load both private and shared assemblies from the

local location to a remote location as well as,

31

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

local location to a remote location as well as,

explore its properties.

DYNAMIC LOADING INTRO
1/2

� An external assembly can be connected to the

program in two ways:

� in static way by using special tools from Microsoft

Visual Studio. This is done, for example, with the

commands “Add Reference P” or “Add Service

32

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

commands “Add Reference P” or “Add Service

Reference P”. In this case, the assembly

manifest contains the relevant information about

the external assembly that was connected; be

obtained dynamically.

DYNAMIC LOADING INTRO 1/2

� An external assembly can be connected to the

program in two ways:

� in static way by using special tools from Microsoft

Visual Studio. This is done, for example, with the

commands “Add Reference P” or “Add Service

33

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

commands “Add Reference P” or “Add Service

Reference P”. In this case, the assembly

manifest contains the relevant information about

the external assembly that was connected; be

obtained dynamically.

DYNAMIC LOADING INTRO 2/2

� dynamically using the Assembly class which is

located in the System.Reflection namespace.

� In this case, the information about the external

assembly is not placed in the manifest of the

current assembly.

34

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

current assembly.

� This information is obtained during runtime, that

is, dynamically. There are a number of tasks in

which information about an assembly in a

program should be obtained dynamically.

Dynamic loading of assembly

� A program that is hosted in an assembly can

include other assemblies in order to use their

capabilities (classes, interfaces, methods, etc.).

� Dynamic loading of assembly is the process of

loading and retrieving information about external

35

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

loading and retrieving information about external

assemblies on demand during program

execution.

� When dynamically loading an external assembly,

there is no information in the manifest about this

assembly. The information is obtained

programmatically.

Load() and LoadFrom() Methods

� The System.Assembly class contains tools for

dynamically loading assemblies and viewing their

properties.

� The System.Assembly class is located in

the System.Reflection namespace.

36

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

the System.Reflection namespace.

� To load an assembly, invoke one of the methods:

method Load() for private assemblies.

Load() and LoadFrom() Methods

� Private assemblies are located in the same

directory as the program that uses them (explores);

method LoadFrom() for shared assemblies.

� Shared assemblies are libraries that can be used

by different applications on the same machine.

37

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

by different applications on the same machine.

Shared assemblies are deployed in a

special GAC (Global Assembly Cache) directory.

� LoadFrom() Example:

Assembly asm = Assembly.LoadFrom(@"E:\TestLib.dll");

� Load() Example:

Assembly asm = Assembly.Load(typName);

using System;

using System.Reflection;

namespace Reflection

{ class Program

{ static void Main(string[] args)

{

Console.Write("Enter External Assembly:");

string typName = Console.ReadLine();

try

Example – Dynamic Loading

38

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

try

{ Assembly asm = Assembly.Load(typName);

DisplayAssembly(asm); }

catch

{ Console.WriteLine("Can't Load Assembly");

}

Console.ReadKey();

}

static void DisplayAssembly(Assembly a)

{

Console.WriteLine("*****Contents in Assembly*******");

Console.WriteLine("Information:{0}",a.FullName);

Type[] asm = a.GetTypes();

foreach (Type tp in asm)

{

Example – Dynamic Loading=.

39

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

{

Console.WriteLine("Type:{0}", tp);

}

}

}

}

4.4 Late Binding

� The .NET framework can create an instance of a given

type using early binding or late binding.

� In early binding, we typically set the external assembly

reference in the project and allocate the type using the

new operator. Early binding allows us to determine errors

40

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

new operator. Early binding allows us to determine errors

at compile time rather than at runtime.

� In late binding, an instance of a given type and invoke its

methods at runtime can be created without having

knowledge at compile time.

� A late binding instance of an external assembly can be

created using the CreateInstance() method of the

System.Activator static class.

using System;

using System.Reflection;

namespace Reflection

{ class Program

{ static void Main(string[] args)

{ try

{ Console.WriteLine("****Assembly Late Binding*****");

Type t = Type.GetType("TestLib.utility,TestLib");

object obj = Activator.CreateInstance(t);

Console.WriteLine("Create a {0} using late binding", obj);

Example – Late Binding

41

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Console.WriteLine("Create a {0} using late binding", obj);

MethodInfo mth = t.GetMethod("Test");

mth.Invoke(obj, null);

Console.WriteLine("Method Invoked");

}

catch

{ Console.WriteLine("Can't Create Assembly Instance");

}

Console.ReadKey();

} }

}

.NET REMOTING

Dr.M. Paul Arokiadass Jerald
42

4.5 .NET REMOTING=Intro

� .NET Remoting provides an infrastructure for

distributed objects.

� It exposes the full object semantics of .NET to

remote processes using plumbing that is both

flexible and extensible.

43

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

flexible and extensible.

� .NET Remoting offers complex functionality,

including support for passing objects by value or

by reference, callbacks, and multiple-object

activation and lifecycle management policies.

� In order to use .NET Remoting, a client needs to

be built using .NET

.NET REMOTING=INTRO

� The .NET Remoting provides an inter-process

communication between Application Domains by

using Remoting Framework.

� The applications can be located on the same

computer , different computers on the same

44

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

computer , different computers on the same

network, or on computers across separate

networks.

� The .NET Remoting supports distributed object

communications over the TCP and HTTP

channels by using Binary or SOAP formatters of

the data stream.

.NET REMOTING ARCHITECTURE

45

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

.NET FORMATTERS FOR
REMOTING

� .NET Framework provides two standard

formatters

� System.Runtime.Serialization.Formatters.Binary.BinaryFo

rmatter

� System.Runtime.Serialization.Formatters.Soap.SoapForm

46

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

� System.Runtime.Serialization.Formatters.Soap.SoapForm

atter

� The BinaryFormatter and SoapFormatter as the

name suggest marshal types in binary and SOAP

format respectively.

.NET FORMATTERS FOR
REMOTING

� For metadata .NET Remoting relies on the CLR

assemblies, which contain all the relevant

information about the data types they implement

and expose it via reflection. The reliance on the

assemblies for metadata makes it easy to

47

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

assemblies for metadata makes it easy to

preserve the full runtime type-system reliability.

As a result, when the .NET Remoting marshals

data, it includes all of a

class's public and private members.

.NET Remoting Objects

� There are three types of objects that can be

configured to serve as .NET remote objects.

Choose the type of object depending on the

requirement of the application.

1. Single Call : Single Call objects service one and

48

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

1. Single Call : Single Call objects service one and

only one request coming in. Single Call objects

are useful in scenarios where the objects are

required to do a limited amount of work. Single

Call object are not required to store state

information, in fact they cannot hold state

information between method calls.

.NET Remoting Objects

2. Singleton Objects : These objects service

multiple clients and hence share data by storing

state information between client invocations. They

are useful in cases in which data needs to be

shared explicitly between clients.

49

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

shared explicitly between clients.

.NET Remoting Objects

3. Client-Activated Objects : These objects are

server-side objects that are activated upon request from

the client.

� When the client submits a request for a server object

using "new" operator, an activation request message is

50

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

using "new" operator, an activation request message is

sent to the remote application.

� The server then creates an instance of the requested

class and returns an ObjRef back to the client by using

which proxy is then created. These objects can store state

information between method calls for its specific client.

� Each invocation of "new" returns a proxy to an

independent instance of the server type.

COMPONENTS OF REMOTING
FRAMEWORK

� The main three components of a Remoting

Framework are :

1. C# Remotable Object

2. C# Remote Listener Application - (listening

51

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

2. C# Remote Listener Application - (listening

requests for Remote Object)

3. C# Remote Client Application - (makes requests

for Remote Object)

The Remote Object is implemented in a class that

derives from System.MarshalByRefObject .

C# Remotable Object

� Any object outside the application domain of the

caller application should be considered

as Remote Object .

� A Remote Object that should be derived

from MarshalByRefObject Class.

52

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

from MarshalByRefObject Class.

� Any object can be changed into a Remote Object

by deriving it from MarshalByRefObject . Objects

without inheriting from MarshalByRefObject are

called Non-remotable Objects.

C# Remote Listener

� Choose and register a channel for handle the

networking protocol and serialization formats and

register the Type with the .NET Remoting System

, so that it can use the channel to listen for

requests for the Type.

53

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

requests for the Type.

� C# Remote Channels are Objects that

responsible of handling the network protocols and

serialization formats.

C# Remote Client

� The Client application for calling Remote Object's

method in C# is simple and straight forward.

� The .NET Remoting System will intercept the

client calls, forward them to the remote object,

and return the results to the client. The Client

54

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

and return the results to the client. The Client

Application have to register for the Remote Type

also.

Steps for creating .NET
Remoting

1. Create and register the channel of transport, the

object used for marshalling,

with ChannelServices. E.g. Use TCP, HTTP or

SMTP channels.

Register the object with RemotingServices.

55

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

2. Register the object with RemotingServices.

Hosting a Remoting
Application (IS Server)

1. Client object registers a channel.

2. Creation of Proxy object (Client activated or Server

Activated)

3. Calling the method of a remote object via proxy.

4. Client-side formatter formats the message and transmits

56

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

4. Client-side formatter formats the message and transmits

it via the appropriate channel.

5. Server-side formatter reformats the message.

6. The specified function on a remote object is executed

and the result is returned.

7. Above the process of formatting and reformatting is

reversed and the result is returned to the client object.

Terminologies in Remoting

� Proxy: To avoid conjunction in networking. Main

work is task Distributing. Two types of proxy.
■ Transparent proxy (There is no physical existence , Created by

IIS server)

■ Real Proxy (Physical Existence)

57

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Real Proxy (Physical Existence)

� Channel: Channel provides the medium for

transfer data from one location to another

location. There are two types of channel.
■ TCP(work with Predefined root Connection oriented)

■ HTTP (No need predefined root)

■ Formatters: Change the data in an appropriate format that it can

traverse through channels.

Terminologies in Remoting

� Formatters: Change the data in an appropriate

format that it can traverse through channels.

Two types of formatters
■ Binary

■ SOAP(Simple Object Access Protocol)

58

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

■ SOAP(Simple Object Access Protocol)

� Sink: Sink is used for security point of view.

Before sending the data, the Data will be

encrypted. Some additional bit will be added with

the data to secure the data. Two types of sink
■ Envoy sink

■ Server Context Sink

� Object Mode On Server: SingleCall, Singleton

Example for Remoting

Create 3 applications:

1. class Library (Of which Remote Object will be created)

2. Server Application (Console Application)

3. Client Application (Window Application)

59

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

Example for Remoting
Class Library - remoteclass

using System;

using System.Collections.Generic;

using System.Text;

namespace remoteclass

{

60

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

{

public class xx:MarshalByRefObject

{

public int sum(int a, int b)

{

return a + b;

}

}

}

Example for Remoting
Server Application

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Tcp;

namespace remoteserver

61

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

namespace remoteserver

{ class Program

{ static voidMain(string[] args)

{ TcpChannel ch=new TcpChannel(8085);

ChannelServices.RegisterChannel(ch);

RemotingConfiguration.RegisterWellKnownServiceType(typeof

(remoteclass.xx),"rahul",WellKnownObjectMode.Singleton);

Console.Write("Sever is Ready........");

Console.Read();

}

} }

Example for Remoting
Client Application

using System; using System.Collections.Generic;

using System.ComponentModel; using System.Data;

using System.Drawing; using System.Text;

using System.Windows.Forms; using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels; using System.Runtime.Remoting.Channels.Tcp;

namespace remoteclient

62

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

namespace remoteclient

{

public partial class Form1 : Form

{

//TcpChannel ch = new TcpChannel();

remoteclass.xx obj = new remoteclass.xx();

public Form1()

{

InitializeComponent();

}

Example for Remoting
Client Application

private void button1_Click(object sender, System.EventArgs e)

{

//ChannelServices.RegisterChannel(ch);

obj = (remoteclass.xx)Activator.GetObject(typeof(remoteclass.xx),

"tcp://localhost:8085/IMSC_CSl");

63

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

"tcp://localhost:8085/IMSC_CSl");

int x = Int32.Parse(textBox1.Text);

int y = Int32.Parse(textBox2.Text);

textBox3.Text = (obj.sum(x, y)).ToString();

}

}

}

References

▪ http://msdn.microsoft.com

▪ http://www.csharphelp.com/

▪ http://www.csharp-station.com/

▪ http://www.csharpindex.com/

▪ http://www.c-sharpcorner.com/

▪ https://www.w3schools.com/cs/

64

Dr. M. Paul Arokiadass Jerald Unit 4-Programming in C#

▪ https://www.w3schools.com/cs/

▪ https://www.javatpoint.com/c-sharp-tutorial

▪ https://www.onlinebuff.com/article_understand-threading-and-types-of-

threading-in-c-using-an-example_56.html

▪ https://www.geeksforgeeks.org/types-of-threads-in-c-sharp/

▪ https://www.bestprog.net/en/2018/11/03/reflection-of-types-getting-type-

metadata-the-system-reflection-namespace-class-system-type-ways-to-

get-information-about-type/

▪ https://www.bestprog.net/en/site-map/c/

