
 DISTRIBUTED OPERATING SYSTEMS

UNIT 2
REMOTE PROCEDURE CALLS

 (RPC Model to Optimization)

Dr.K.Geetha
Associate Professor of Computer Science
Periyar Arts College, Cuddalore

overview
The RPC Model

Transparency

 Implementation

 Stub

Messages

 Marshaling

Server Management

Parameter Passing Semantics – Call Semantics

Communication protocols

Complicated – Client server Binding

 Exception Handling – Security – Special types

Heterogeneous – Light Weight – Optimization

Dr.K.Geetha 2

RPC

The RPC is an accepted IPC mechanism

in distributed systems.

Dr.K.Geetha 3

RPC
Simple call syntax.

 Familiar semantics - similar to local
procedure calls

A well-defined interface.

compile-time type checking and automated
interface generation.

 Its ease of use.

 Its generality

 Its efficiency.

 Facilitate to communicate between all
processes

Dr.K.Geetha 4

RPC MODEL

The caller places arguments to the procedure

in some well-specified location.

 Control is then transferred to the sequence

of instructions that constitutes the body of the

procedure.

The procedure body is executed in a newly

created execution environment

 After the execution is over, control returns to

the calling point, With result.

Dr.K.Geetha 5

client
server

Req

Reply

Wait for Reply

Send Reply And Wait for Next Req

Dr.K.Geetha 6

RPC
Transparency of RPC

Local procedures and remote procedures are

indistinguishable to programmers.

Dr.K.Geetha 7

RPC
TRANSPARENCY

SYNTATIC SEMANTIC

RPC
The calling process is suspended until the

called procedure returns.

The caller can pass arguments to the called

procedure (Remote procedure).

 The called procedure (remote procedure)

can return results to the caller.

Dr.K.Geetha 8

Differences between remote procedure

calls and local procedure calls

SL NO LOCAL PROCEDURE CALLS REMOTE PROCEDURE

CALLS

1 same Address space is disjoint from

the calling program

2 Have access called (remote) procedure

cannot have access to any

variables or data values in the

calling program's environment.

3 it is meaningless to pass

argument values containing

pointer

Structures

4 More vulnerable to failures

5 consume much more time

(100-1000 times more) than

local procedure calls.

Dr.K.Geetha 9

IMPLEMENTING RPC MECHANISM

Five elements of program with RPC

1. The client

2. The client stub

3. The RPC Runtime

4. The server stub

5. The server

Dr.K.Geetha 10

RETURN

UNPACK

CLIENT SERVER

CLIENT STUB SERVER STUB

RPC RUNTIME RPC RUNTIME

RETURN CALL

UNPACK PACK

RECEIVE SEND RECEIVE SEND

UNPACK PACK

CALL RETURN

RESULT PACKET

CALL PKT

Dr.K.Geetha 11

IMPLEMENTING RPC MECHANISM

 Client

– A user process that initiates a remote procedure call.

– Makes a normal local call that invokes a procedure in

the client stub.

 Client Stub

 -A stub is a piece of code that converts parameters

 during a remote procedure call (RPC)

 - Responsible for conversion (marshalling) of

 parameters and de conversion of results .

– packs a procedure and the arguments into a

message for local RPC Runtime to send it to the

server stub.

– Unpacks the result and passes it to the client.

Dr.K.Geetha 12

IMPLEMENTING RPC MECHANISM

RPC Runtime

– Handles transmission of messages between
client and server.

– Responsible for retransmissions,
acknowledgments, packet routing, and
encryption.

– on the client machine receives the call request
message from the client stub. Receives the result
of procedure execution

– on the server machine receives the message
containing the result of procedure from the server
stub and receives the call request.

Dr.K.Geetha 13

IMPLEMENTING RPC MECHANISM

Server Stub

– On receipt of the call request message from

the local RPCRuntime, the server stub

unpacks it and makes a perfectly normal call

to invoke the appropriate procedure in the

server.

– On receipt of the result of procedure

execution from the server, the server stub

packs the result into a message and then

asks the local RPCRuntime to send it to the

client stub.

Dr.K.Geetha 14

IMPLEMENTING RPC MECHANISM

Server

On receiving a call request from the server

stub,

Executes the appropriate procedure and

Returns the result of procedure execution to the

server stub

Dr.K.Geetha 15

IMPLEMENTING RPC MECHANISM

STUB GENERATION

• Manually.

• RPC implement or provides a set of translation

functions

• User can construct his or her own stubs.

• Simple to implement and can handle very complex

parameter types.

• Automatically.

• Commonly used method for stub generation.

• Uses Interface Definition Language (JDL) for

defining the interface between a client and a

server.

Dr.K.Geetha 16

RPC MESSAGES

RPC
Messages

CALL

REPLY

Dr.K.Geetha 17

RPC MESSAGES

 1. Call Messages that are sent by the

client to the server for requesting execution

of a particular remote procedure

 2. Reply Messages that are sent by the

server to the client for returning the result of

Remote Procedure Execution

Dr.K.Geetha 18

RPC MESSAGES

• The FIVE basic components necessary in a call
message are as follows:

– The identification information of the remote
procedure to be executed

– The arguments necessary for the execution of the
procedure

– A message identification field that consists of a
sequence number.

– A message type field that is used to distinguish call
messages from reply messages.

– A client identification field for executing the
concerned procedure

Dr.K.Geetha 19

RPC MESSAGES

CALL MESSAGE

Dr.K.Geetha 20

MESSGE
IDENTIFIER

MESSAGE
TYPE

CLIENT
IDENTIFIER

REMOT PROCEDURE IDENTIFIER RESULT
TYPE PROGRAM

NUMBER
VERSION
NUMBER

PROCEDURE
NUMBER

RPC MESSAGES
REPLY MESSAGES

 1, Not intelligible to it. The server rejects it.

 2. Not authorized to use the service. The
 server will return an unsuccessful reply

 3. The remote program, version, or
 procedure number not available with it. Will
 return an unsuccessful reply

 4. The remote procedure is not able to
 decode the supplied arguments.

 5. An exception condition (such as division
 by zero) occurs while executing the
 specified remote procedure.

Dr.K.Geetha 21

Meaage

Identifier

Message

Type

Reply Status

(Successful)

Result

SUCCESSFUL AND UNSUCCESFUL REPLY

Message

Identifer

Message

Type

Reply Status

(UnSuccessf

ul)

Reason for

failure

RPC MESSAGES

Dr.K.Geetha 22

Marshalling Arguments

• Implementation of remote procedure calls

Dr.K.Geetha 23

CLIENT SERVER

Transfer of arguments

Results

Marshalling Arguments

• Transfer of message datarequires encoding and decoding
of the message data.

• For RPCs this operation is known as Marshaling and
involves the following Actions:

 1. Taking the arguments of a client process or the
 result of a server

 2.Encoding the message data of step 1 above on the
 sender's computer.

 Placing them into a message buffer.

 3. Decoding of the message data on the receiver's
 computer.

 The reconstruction of program objects from the
 message data that was received in stream form.

Dr.K.Geetha 24

Marshalling Arguments
 Marshalling may be

 1. Provided as a part of the RPC software.

 2. Those that are defined by the users of

 the RPC system.

 A good RPC system

– generate in-line marshaling code for every remote

– it is difficult to achieve this goal because of the

large amounts of code

Dr.K.Geetha 25

SERVER MANAGEMENT
 Stateful Servers

– Open (filename, mode): This operation is used to open a

file identified by filename in the specified mode.

– Read (byt id, n, buffer): This operation is used to get n

bytes of data from the file

– Write (fid, n, buffer): On execution of this operation, the

server takes n bytes of data

– Seek (fid, position): causes the server to change the value

of the read write pointer

– Close (fid): This statement causes the server to delete

from its file-table the file state

Dr.K.Geetha 26

DIFFERENCES BETWEEN STATEFUL AND
STATELESS SERVERS

Slno Stateful server Statelessserv

er

1 Helpful in failures

2 Maintain server infn

3 Knows whether a client has crashed

4 Server crash recovery not easy

5 Speed

6 Reliable

7 Less data

8 recovery

Dr.K.Geetha 27

Server Creation Semantics
• The remote procedure to be executed is

totally independent of the client process.

Based on the time duration for which RPC

servers survive, they may be classified as

Instance-per-call servers,

 Instance-per-transaction or Session servers

Persistent servers.

Dr.K.Geetha 28

Server Creation Semantics

Instance-per-Call Servers

Servers belonging to this category exist only

for the duration of a single call.

A server of this type is created by RPC

Runtime on the server machine only when a

call message arrives.

The server is deleted after the call has been

executed.

Dr.K.Geetha 29

Server Creation Semantics

The servers of this type are stateless because they
are killed as soon as they have serviced.

The inter call state information will make the
remote procedure calls expensive.

If it is maintained by the client process, the state
information must be passed to and from the
server with each call.

Will lead to the loss of data abstraction across the
client-server

Dr.K.Geetha 30

Server Creation Semantics
Instance-per-Session Servers

Servers exist for the entire session

can maintain inter-call state information

The overhead for a client-server session that

involves a large number of calls is also

minimized.

There is a server manager for each type of

service.

Dr.K.Geetha 31

Server Creation Semantics
Persistent Servers

Servers are usually created and installed

before the clients that use them.

Minimum number of clients currently bound to

it and returns the address of the selected

server to the client.

The client then directly interacts with that

server.

Manage several sets of state information.

Dr.K.Geetha 32

PARAMETER·PASSING SEMANTICS

Dr.K.Geetha 33

Parameter
Passing

Call by
value

Call by
reference

PARAMETER PASSING SEMANTICS

Call by value

In the Call-by- value method, all parameters

are copied into a message

Passing larger data types such as

multidimensional arrays, trees, and so on, can

consume much time for transmission of data

that may not be used.

Dr.K.Geetha 34

PARAMETER PASSING SEMANTICS
Most RPC mechanisms use the call-by-value

semantics for parameter passing

The client and the server exist in different

address spaces, possibly even on different types

of machines, so that passing pointers or passing

parameters by reference is meaningless.

Dr.K.Geetha 35

PARAMETER·PASSING SEMANTICS

In an object-based system that uses the

RPC mechanism for object invocation, the

call-by-reference semantics is known as

call-by-object-reference.

Dr.K.Geetha 36

PARAMETER·PASSING SEMANTICS
Call By-Move

A parameter is passed by reference, as in the

method of call-by-object-reference

but at the time of the call, the parameter

object is moved to the destination node (site

of the callee). –Call By Visit

The argument object may either return to the

caller's node or remain at the callee' s node -

Call-By-Move

Dr.K.Geetha 37

Call SEMANTICS

Normal functioning of an RPC may get

disrupted due to

– The call message gets lost.

– The response message gets lost.

– The callee node crashes and is restarted.

– The caller node crashes and is restarted.

Dr.K.Geetha 38

Call
semantics

Possibly or
may be call

Last One
call

Last of
many call

Atleast
once call

Exactly
once call

Dr.K.Geetha 39

Call SEMANTICS
Possibly or may be call

This is the weakest semantics

In this method, to prevent the caller from waiting

indefinitely for a response from the callee, a

timeout mechanism is used.

The caller waits until a pre-determined timeout

period and then continues with its execution.

Does not guarantee anything about the receipt

of the call message.

The response message is not important for the

caller

Dr.K.Geetha 40

Call SEMANTICS
Last one call
suppose process PI of node N1 calls
procedure Fl on node N2, which in turn calls
procedure F2 on node N3.

Node N crashes.
 Node N1 's processes will be restarted, and
PI's call to F1 will be repeated. The second invocation

of FI will again call procedure F2 on node N3.
Unfortunately, node N3 is totally unaware of node N
crash.

Therefore procedure F2 will be executed twice on
node N3 and N3 may return the results of the two
executions of F2 in any order

 Dr.K.Geetha 41

Call SEMANTICS
• The basic difficulty in achieving last-one

semantics is caused by orphan calls.

• An orphan call is one whose parent (caller)

has expired due to a node crash.

• To achieve last-one semantics, these orphan

calls must be terminated before restarting the

crashed processes Killing by “orphan

extermination”

Dr.K.Geetha 42

Call SEMANTICS
Last of many calls

A simple way to neglect orphan calls is to use call

identifiers to uniquely identify each call. When a call is

repeated, it is assigned a new call identifier.

Each response message has the corresponding call

identifier associated with it.

A caller accepts a response only if the call identifier

associated with it matches with the identifier of the

Most recently repeated call; otherwise it ignores the

response message.

Dr.K.Geetha 43

Call SEMANTICS
 Atl east once call

This is an even weaker call semantics than the last-

of-many call semantics.

Guarantees that the call is executed one or more

times but does not specify which results are returned

to the caller.

 can be implemented simply by using timeout-

 based retransmissions

if there are any orphan calls, it takes the result of the

first response message and ignores the others,

whether or not the accepted response is from an

orphan.

Dr.K.Geetha 44

Call SEMANTICS
Exactly once call

This is the strongest and the most desirable call
semantics because it eliminates the

Possibility of a procedure being executed more
than once

No matter how many times a call is retransmitted.
The last-one, last-of-many, and at-least-once call
semantics cannot guarantee this

Dr.K.Geetha 45

Call SEMANTICS
The main disadvantage of these cheap

semantics is that, if a procedure is executed
more than once with the same parameters,
the same results and side effects will be
produced
ReadNextRecord(Filename)

ReadRecordN(Filename, N)

AppendRecord(Filename, Record)

WriteRecordN(FiJename, Record, N)

Dr.K.Geetha 46

COMMUNICATION PROTOCOLS FOR
RPCs

• The Request Prtocol -R Protocol

Dr.K.Geetha 47

COMMUNICATION PROTOCOLS FOR RPCs

The Request/Reply Protocol/The RR Protocol

using implicit acknowledgment to eliminate explicit

acknowledgment messages.

A server's reply message is regarded as an

acknowledgment of the client's request message.

 A subsequent call packet from a client is regarded as

an acknowledgment of the

server's reply message of the previous call made by

that client.

Dr.K.Geetha 48

COMMUNICATION PROTOCOLS FOR RPCs

Dr.K.Geetha 49

COMMUNICATION PROTOCOLS FOR
RPCs

The Request/Reply/Acknowledge.Reply Protocol

The Request/Reply/Acknowledge.Reply Protocol

Dr.K.Geetha 50

COMPLICATED RPCs

• 1.RPCs involving long-duration calls or

large gaps between calls

• 2. RPCs involving arguments and/or

results that are too large to fit in a single

datagram packet

Dr.K.Geetha 51

COMPLICATED RPCs

Periodic probing of the server by the client

After a client sends a request message to a

server, it periodically sends a probe packet to

the server, which the server is expected to

acknowledge.

client to detect a server's crash or

communication link failures and to notify the

corresponding user of an exception condition.

The message identifier of the original request

message is included in each probe packet. .

Dr.K.Geetha 52

COMPLICATED RPCs
Periodic generation of an acknowledgment

by the server.

If server is not able to generate the next packet

significantly sooner than the expected

retransmission interval, it spontaneously

generates an acknowledgment.

Therefore for a long-duration call, the server may

have to generate several acknowledgments, the

number of acknowledgments being directly

proportional to the duration of the call.

Dr.K.Geetha 53

COMPLICATED RPCs

If the client does not receive either the

reply for its request or an acknowledgment

from the server within a predetermined

timeout period, it assumes that either the

server has crashed

Or communication link failure has

occurred. In this case, it notifies the

concerned user of an exception condition.

Dr.K.Geetha 54

COMPLICATED RPCs
RPCs Involving Long Messages

To handle such an RPC is to use several physical
RPCs for one logical RPC.

Each physical RPC transfers an amount of data
that fits in a single-datagram packet.

This solution is inefficient due to a fixed amount
of overhead involved with each RPC independent
of the amount of data sent.

Dr.K.Geetha 55

COMPLICATED RPCs
Another method of handling complicated

RPCs of this category is to use Multi-

datagram messages.

 A long RPC argument or result is

fragmented and transmitted in Multiple

packets.

To improve communication performance, a

single acknowledgment packet is used for

all the packets of a multi-datagram

Dr.K.Geetha 56

CLIENT-SERVER BINDING
A client should know the location of a server

before a remote procedure call and also know

1. To specify a server to which it wants to get

bound

2. The binding process locate the specified server

3. Time to bind a client to a server

4. To change a binding during execution

 5. Simultaneously bound to multiple servers that

provide the same

Dr.K.Geetha 57

CLIENT-SERVER BINDING

• Server Naming

– the use of interface names

– interface name has two parts

– a type and an instance

– Type specifies the interface itself and instance

specifies a server providing the services

within that interface.

Dr.K.Geetha 58

CLIENT-SERVER BINDING
• Server Locating

• The two most commonly used methods

 Broadcasting.

• message to locate the desired server is broadcast to

all the nodes from the client node.

• The nodes on which the desired server is located return

a response message.

• Desired server may be replicated on several nodes so

the client node will receive a response from all these

nodes.

• The first response that is received at the client's node

is given to the client process and all subsequent

responses are discarded.

• This method is easy to implement suitable for use for

small networks only.

Dr.K.Geetha 59

CLIENT-SERVER BINDING

Binding Agent.

• A name server used to bind a client to a

server by providing the client with the location

information of the desired server.

• Maintains a binding table, which is a mapping

of a server's interface name to its locations.

• All servers register themselves with the

binding agent as a part of their initialization

process.,

Dr.K.Geetha 60

CLIENT-SERVER BINDING
To register with the binding agent, a server

gives

Binder its identification information and a

handle used to locate it.

A server can also deregister with the binding

agent when it is no longer prepared to offer

service.

The binding agent can also poll the servers

periodically, automatically deregistering any

server that fails to respond.

Dr.K.Geetha 61

CLIENT-SERVER BINDING

A binding agent interface has three primitives:

Register is used by a server to register itself with

the binding agent,

Deregister is' used by a server to deregister

itself with the binding agent, and

Lookup is used by a client to locate a server.

Dr.K.Geetha 62

CLIENT-SERVER BINDING
• The binding agent mechanism has several

advantages.
• This method can support multiple servers.
• Higher fault tolerance.
• The clients can be spread evenly over the servers

to balance the load.
• Servers specify a list of users who may use its

service, in which case the binding agent would
refuse to bind those clients servers who are not
authorized to use its service.

Dr.K.Geetha 63

BINDING AGENT

SERVER
CLIENT

1. SERVER REGISTERS

2.CLIENT REQUESTS THE SERVER LOCATION

3. BINDING AGENT RETURNS THE SERVER LOCATON

4. CLIENT CALLS THE SERVER

Dr.K.Geetha 64

CLIENT-SERVER BINDING

• Drawbacks

– The overhead involved is large.

– Replication involves extra overhead of

keeping the multiple replicas consistent.

Dr.K.Geetha 65

CLIENT-SERVER BINDING

• Binding Time

– A client may be bound to a server at compile
time, at link time, or at call time

– Binding at Compile Time

– it may be used in an application whose
configuration is expected to remain static for a
fairly long time.

Dr.K.Geetha 66

CLIENT-SERVER BINDING

• Binding at Link Time

– A server process exports its service by registering
itself with the binding agent as part of its
initialization process.

– A client then makes an import request to the
binding agent for the service before making a call.

– The binding agent binds the client and the server
by returning to the client the server's handle

Dr.K.Geetha 67

CLIENT-SERVER BINDING

• Binding at Call Time

– A commonly used approach for binding at call

time is the indirect call method,

Dr.K.Geetha 68

BINDING AGENT

SERVER
CLIENT

2. THE BINDING
AGENT SENDS AN
RPC CALL

1.CLIENT PASSES THE SERVER
INTERFACE NAME AND ARGUMENTS

3. THE SERVER RETURNS THE
RESULT

5. SUBSEQUENT CALLS ARE SENT
DIRECTLY

4,THE BINDING AGENT
RETURNS THE RESULT

Dr.K.Geetha 69

CLIENT-SERVER BINDING
• Changing Bindings

• when a file server has to be replaced with a
new one, either it must be replaced when no
files are open or the state of all the open files
must be transferred from the old server to the
new one

• Multilple Simultaneous Bindlngs

 There may be situations when it is
advantageous for a client to be bound

Dr.K.Geetha 70

EXCEPTION HANDLING
• Used to

• Return a well-known value to the process,

• making a system call to indicate failure and to report the type of

error by storing a suitable value in a variable in the environment

of the calling program.

Dr.K.Geetha 71

SECURITY
• Breaches

– encryption-based security for calls.

– the arguments and results of RPC are

readable by anyone monitoring

– communications security issues

• authentication of the server by the client required?

• authentication of the client by the server required

when the result is returned?

• Is it all right if the arguments and results of the

RPC are accessible to other users

Dr.K.Geetha 72

SOME SPECIAL TYPES OF RPCs

Callback RPC

 The ability for a server to call its client back

to provide callback RPC facility, the following are
necessary

– Providing the server with the client's handle

– Making the client process wait for the callback
RPC

– Handling call back deadlocks

Dr.K.Geetha 73

client Server

Call parameter list

Procedure Execution

Call back parameter list

Reply Result of Call back

Reply Result of Call

Procedure Execution Ends

Dr.K.Geetha 74

CALLBACK RPC

• Providing the Server with the Client's

Handle

– server must have the client's handle to call the

client back

– client process uses program number

– client sends its handle, such as the port

Dr.K.Geetha 75

Callback RPC

• To wait for the callback, a client process

normally makes a call to a svc-routine.

• The svc-routine waits until it receives a

request and then dispatches the request to

the appropriate procedure

Dr.K.Geetha 76

Broadcast RPC
• A client's request is broadcast on the network

• The servers process that have the procedure
for processing that request.

• The client waits for and receives numerous
replies

• following two methods for broadcasting a
client's request:

• 1. The client has to use a special broadcast
primitive

• 2. To declare broadcast ports. A network port of
each node is connected to a broadcast port

Dr.K.Geetha 77

Batch-Mode RPC
Reduces the overhead involved

The requests are queued on the client side, and the
entire queue of requests is flushed to the server when
one of the following conditions becomes true:

1. A predetermined interval elapses.

2. A predetermined number of requests have been
queued.

3. The amount of batched data exceeds the buffer size.

4. A call is made to one of the server's procedures for
which a result is expected.

Dr.K.Geetha 78

RPC IN HETEROGENEOUS ENVIRONMENTS

• The three common types of heterogeneity

• Data representation. Machines having different

architectures may use different data

representations.

• Transport protocol. For better portability of
applications, an RPC system must be independent of
the underlying network transport protocol

• Control protocol. For better portability of
applications, an RPC system must also be
independent of control information in each
transport packet to track the state of a call.

Dr.K.Geetha 79

LIGHTWEIGHT RPC
• Communication traffic in operating systems are of

two types

 1. Cross-domain, which involves communication
 between domains on the same machine

 2. Cross-machine, which involves communication
 between domains located on separate machines

The LRPC is a communication facility designed and
optimized for cross-domain Communications. Suitale
for micro-kernel applications

Dr.K.Geetha 80

LIGHTWEIGHT RPC

Four techniques described below are used by
LRPC.

Dr.K.Geetha 81

LR
P

C

SIMPLE CONTROL
TRANSFER

SIMPLE DATA
TRANSFER

SIMPLE STUBS

DESIGN FOR
CONCURRENCY

LIGHTWEIGHT RPC
• Simple Data Transfer- Traditional System

Dr.K.Geetha 82

Reference: Pradeep K.Sinha” Distributed Operating Systems concepts
and Design”

LIGHTWEIGHT RPC

Dr.K.Geetha 83

Reference: Pradeep K.Sinha” Distributed Operating Systems concepts
and Design”

LRPC
• Data Transfer -Traditional VS LRPC

• 1. From the client's stack to the RPC message

• 2. From the message in the client domain to the

message in the kernel domain

• 3. From the message in the kernel domain to the

message in the server domain

• 4. From the message in the server domain to the

server's stack

Dr.K.Geetha 84

LRPC
• LRPC uses a shared-argument stack .

• same argument in an LRPC can be copied only

once-from the client's stack to the shared-

argument stack. The server uses the argument

from the argument stack.

• Also allows the copying of parameters and

results many times.

Dr.K.Geetha 85

LIGHTWEIGHT RPC
• Simple Stubs

• A three-layered communication protocol

 End to end, described by the calling conventions of the
 programming language and architecture

 Stub to stub, implemented by the stubs themselves

 Domain to domain, implemented by the kernel

• Design for Concurrency

 Throughput is increased by avoiding needless lock
 contention by minimizing the use of shared-data
 structures

 Latency is reduced by reducing context switching
 overhead by caching domains on idle processors.

Dr.K.Geetha 86

Optimization of Performance

• Concurrent Access to Multilple servers

– The use of threads

– the use of the early reply approach

• a call is split into two separate RPC calls, one

passing the parameters to the server and the other

requesting the result. In reply to the first call, the

server returns a tag that is sent back with the

second call to match the call with the correct result.

– call buffering approach

Dr.K.Geetha 87

o
p

tm
iz

at
io

n
 servingmultplerequests

Reducig per call work
load

Replycachingof
idempotent RPCs

Proper selection of
timeout values

Protocols

Dr.K.Geetha 88

Optimization of Performance

 • Serving Multiple Requests

Simultaneously

• Delay is the main issue caused by

– while a server waits for a resource that is

temporarily unavailable.

– a server calls a remote function that involves

a lot of computation to complete

– or involves a considerable transmission delay

To avoid this

 threading

Dr.K.Geetha 89

Optimization of Performance

 • Reducing Per-Call Workload of Servers

– Numerous client requests can quickly affect a

server's performance

– the server has to do a lot of processing for each

request.

So,

– keep the requests short and the amount of work

required by a server for each request low.

– use stateless servers

.

Dr.K.Geetha 90

Optimization of Performance
 • Reply Caching of Idempotent Remote

Procedures

– client requests to a server arrive at a rate

faster than the server can process

– a backlog develops,

– In such a situation, the reply cache helps, the

server just sends the cached reply

Dr.K.Geetha 91

Optimization of Performance
 • Proper Selection of Timeout Values

– "too small“ timeout value wilI cause timers to

expire too often, resulting in unnecessary

retransmissions.

– a "too large" timeout value will cause a

needlessly long delay in the event that a

message is actually lost. I

Dr.K.Geetha 92

Optimization of Performance

• Proper Design of RPC Protocol Spec.

– Protocols should be designed to minimize the

amount of data that has to be sent over the

network and the frequency at which it is sent.

– New Protocols

Dr.K.Geetha 93

Reference: Pradeep K.Sinha “ Distributed
Operating System Concepts”

Dr.K.Geetha 94

