
DISTRIBUTED OS- UNIT 3
CLOCK

SYNCHRONIZATION
(Clock Synchronization to Threads)

Dr. K. Geetha, Associate Professor,
Department of Computer Science,
Periyar Arts College, Cuddalore

UNIT III CLOCK
SYNCHRONIZATION

Unit III -Clock Synchronization – Event Ordering
– Mutual Exclusion – Deadlock – Election
Algorithms - Process Migration – Threads.

Reference: Distributed Operating Systems
Concepts and Design- Pradeep K. Sinha,PHI,
New Delhi, 2007.

2 Dr.K.Geetha

SYNCHRONIZATION

• Sharing of resources is Economical.

• Sharing may be cooperative or competitive

examples of process cooperation

– producer-consumer or

– client-server relationship.

Sharing needs synchronization

3 Dr.K.Geetha

SYNCHRONIZATION

• Synchronization-related issues

– Clock synchronization

– Event ordering

– Mutual exclusion

– Deadlock

– Election algorithms

4 Dr.K.Geetha

ClOCK SYNCHRONIZATION

• Timer mechanism (called a computer clock)

– to keep track of current time

– for various accounting purposes such as
calculating the time spent by a process in CPU
utilization, disk , and so on, so that the
corresponding user can be charged properly.

5 Dr.K.Geetha

How Computer Clocks Are Implemented
ClOCK SYNCHRONIZATION

6 Dr.K.Geetha

ClOCK SYNCHRONIZATION

• To make the computer clock function as an
ordinary clock life, the following things are done:

1 . The value in the constant register is chosen
so that 60 clock ticks occur in a second.

 2. The computer clock is synchronized
with real time (external clock).

For this, two more values are stored in the system

 -a fixed starting date and time and the
number of ticks.

7 Dr.K.Geetha

DRIFTING OF CLOCKS

A clock always runs at a constant rate
because its quartz crystal oscillates at a well-
defined

frequency

The difference accumulated over many

oscillations leads to an observable difference in
the times of the two clocks

 clocks do not always maintain perfect time

8 Dr.K.Geetha

DRIFTING OF CLOCKS

 suppose that when the real time is t, the time
value of a clock

p is Cp(t).

If all clocks in the world were perfectly
synchronized, we would have Cp(t) =t for all p
and all t.

That is, if C denotes the time value of a clock, in
the ideal case

dc/dt should be 1.

1-p<=dc/dt<=1+p
9 Dr.K.Geetha

DRIFTING OF CLOCKS

The nodes of a distributed system must
periodically resynchronize

Their local clocks to maintain a global time base
across the entire system

10 Dr.K.Geetha

DRIFTING OF CLOCKS

Distributed system requires the following
types of clock synchronization

1. Synchronization of the computer clocks
with real-time (or external) clocks

2. Mutual (or internal) synchronization of
the clocks of different nodes of the system:

11 Dr.K.Geetha

CLOCK SYNCHRONIZATION ISSUES
No two clocks can be perfectly synchronized.

The difference in time values of two clocks is
called clock skew.

 clock skew of any two clocks is set less than
delta.

Clock synchronization requires each node to
read the other nodes' clock values.

Errors occur mainly because of unpredictable
communication delays

12 Dr.K.Geetha

CLOCK SYNCHRONIZATION ISSUES

Important issue

 Time running backward

 clock should be slowed down instead of
adjustment

13 Dr.K.Geetha

CLOCK SYNCHRONIZATION
ALGORITHMS

Centralized and

Distributed algorithms

Centralized Algorithms:

 one node has a real-time receiver(time
server node)

clock time of this node is regarded as correct
and used as the reference time.

clocks of all other nodes synchronized with
the clock time of the time server node.

14 Dr.K.Geetha

CLOCK SYNCHRONIZATION
ALGORITHMS

Depending on the role of the time server
node, centralized clock synchronization
algorithms are again of two types

Passive time server and

Active time server

15 Dr.K.Geetha

CENTRALIZED ALGORITHMS

Passive Time Server:

The time server receives the message,

It quickly responds with a message ("time = T")

• when the client node sends the "time=?"
message, its clock time is To

• when it receives the "time = T" message, its clock
time is T1.

16 Dr.K.Geetha

CENTRALIZED ALGORITHMS

To and T1 are measured using the same clock,

The best estimate of the time required for the
propagation of the message

"time = T" from the time server node to the
client's node is (T 1 - To)/2.

The reply is received at the client's node, its
clock is readjusted to' T+(T1 - To)/2.

17 Dr.K.Geetha

CENTRALIZED ALGORITHMS

Active Time Server Centralized Algorithm

In the passive time server

approach, the time server only responds to
requests for time from other nodes.

In the active time server approach, the time
server periodically broadcasts its clock

time ("time = T").

18 Dr.K.Geetha

CENTRALIZED ALGORITHMS

 Each node has prior knowledge of the

approximate time (To) required for the
propagation of the message "time =T" from the
time server node to its own node.

Drawback of this method

❖ Not fault tolerant.
❖ Chance for a node readjusted to an incorrect

value.

❖ Requires broadcast facility

19 Dr.K.Geetha

CENTRALIZED ALGORITHMS

Active time server algorithm is the Berkeley
algorithm.

For fault-tolerant average of the

clock values of all the computers (including its
own) is considered

20 Dr.K.Geetha

CENTRALIZED ALGORITHMS

Centralized clock synchronization algorithms
suffer from two major drawbacks:

I. Subject to single-point failure. This makes the
system unreliable.

2. From a scalability point of view it is generally
not acceptable to get all the time

requests serviced by a single time server. In a
large system, such a solution puts a heavy
burden on that one process.

 21 Dr.K.Geetha

DISTRIBUTED ALGORITHMS

 INTERNAL

SYNCHRONIZATION

LOCALIZED AVERAGING
DISTRIBUTED ALGORITHMS

GLOBAL AVERAGING
DISTRIBUTED ALGORITHMS

22 Dr.K.Geetha

GLOBAL AVERAGING DISTRIBUTED
ALGORITHMS

❖ The clock process at each node broadcasts its
local clock time in the form of a special
"resync" message

❖ Parameter depends on total number of nodes
in the system, the maximum allowable drift
rate, and so on

❖ These broadcasts will not happen
simultaneously from all nodes

23 Dr.K.Geetha

GLOBAL AVERAGING DISTRIBUTED

ALGORITHMS
 ❖ The clock process estimates the skew of its

clock with respect to each of the other nodes
on the basis of the times at which it received
resync messages.

❖ Fault-tolerant average of the estimated
skews is computed

24 Dr.K.Geetha

GLOBAL AVERAGING DISTRIBUTED

ALGORITHMS
 Drawbacks

1. Network to support broadcast facility and

2. Large amount of message traffic generated

25 Dr.K.Geetha

LOCALIZED AVERAGING

DISTRIBUTED ALGORITHMS.
 ❖ The nodes of a distributed system are

logically arranged in some kind of pattern,
such as a ring or a grid.

❖ Periodically, each node exchanges its clock
time with its neighbors in the ring, grid, or
other structure

❖ Sets its clock time to the average of its own
clock time and the clock times of its
neighbors

 26 Dr.K.Geetha

CASE STUDY

Two popular services for synchronizing clocks

Distributed Time Service (DTS)

Network Time Protocol (NTP).

DTS is a component of DCE

DTS does not define time as a single value.

On each DTS client node a process runs called a
DTS clerk which requests for time information

 DTS clerk synchronizes its local clock

 It initiates resynchronization by doing an RPC
with allthe DTS servers on its LAN requesting for
the time.

27 Dr.K.Geetha

DTS SERVER 1

DTS SERVER 2

DTS SERVER 3

DTS SERVER 4

LARGEST
OVERLAP

DISCARDED INTERVAL

Mid point is the New Clock Value

28 Dr.K.Geetha

EVENT ORDERING
it is necessary to ensure that all events that

occur in a distributed system be totally ordered
in a manner that is consistent with an observed
behavior

 logical clocks for ordering of events based
on the happened-before relation.

29 Dr.K.Geetha

HAPPENED BEFORE RELATION

The happened-before relation (denoted by ->) on a set of
events satisfies the following

conditions:

1. If a and b are events in the same process and a occurs
before b, then a -> b.

2. If a is the event of sending a message by one process
and b is the event of the receipt of the same message by
another process, then a -> b.

3. If a ->b and b ->c, then a -> c. That is, happened-before
is a transitive relation.

30 Dr.K.Geetha

HAPPENED BEFORE RELATION

Two events are concurrent if neither can
causally affect the other.

So, the happened-before relation is sometimes
also known as the Relation of causal ordering.

31 Dr.K.Geetha

TIME

P1 P2 P3

E10

E11

E12

E13

E20

E21

E22

E23

E30

E31

E32

E33

32 Dr.K.Geetha

LOGICAL CLOCKS CONCEPT

❖ in a distributed system
➢ the happened-before relation must be defined

without the use of globally synchronized physical
clocks

➢ a common clock or a set of perfectly
synchronized clocks are not available.

The logical clocks concept is

is a way to associate a timestamp

33 Dr.K.Geetha

LOGICAL CLOCKS CONCEPT

logical clocks must satisfy the following clock
condition:

For any two events a and b.

 if a -> b. then C(a) < C(b).

34 Dr.K.Geetha

IMPLEMENTATION OF LOGICAL
CLOCKS

For a happened before relation, the following conditions
should hold

Cl: If a and b are two events within the same process Pi and
a occurs before b, then

Ci(a) < Cj(b).

C2: If a is the sending of a message by process Pi and b is
the receipt of that message

by process Pj, then Ci(a) < Cj(b).

C3: A clock C, associated with a process Pi must always go
forward, never backward. That is, corrections to time of a
logical clock must always be made by adding a positive
value to the clock, never by subtracting value.

35 Dr.K.Geetha

IMPLEMENTATION OF LOGICAL
CLOCKS

To meet conditions CI, C2, and C3, Lamport's
algorithm uses the following implementation rules:

IRl: Each process Pi increments C, between any two
successive events.

IR2: If event a is the sending of a message m by
process Pi the message m contains a timestamp Tm
and upon receiving the message m a process Pj sets
C, greater than or equal to its present value but
greater than Tm

36 Dr.K.Geetha

E11

E12

E13

E14

E15

E16

E21

E22

E23 (3,5) Since 3 <4

E24
(4,6)

E25

C1

C2

C3

C4

C5

TIME
STAMP=4

TIME STAMP = 6

Figure 1 IMPLENETATION OF CLOCKS WITH TIME STAMP

37 Dr.K.Geetha

TOTAL ORDERING OF EVENTS
the events are ordered by the times at which
they occur

when the clocks of both

processes show exactly the same time (say 100),
both events will have a timestamp of

100

the time stamps associated with events a and b
will be 100.001 and 100.002, respectively,
where the process identity numbers of
processes PI and. P2 are 001 and 002,
respectively.

38 Dr.K.Geetha

MUTUAL EXCLUSION
-A file must not be simultaneously updated

by multiple processes.

-use of unit record peripherals such as tape
drives or printers must be restricted to a single
process at a time.

-Exclusive access to such a. shared resource
by a process must be ensured.

-Critical sections

(the sections of a program that need
exclusive access to shared resources are critical
sections)

39 Dr.K.Geetha

MUTUAL EXCLUSION
Requirements:

1. Mutual exclusion. At any time only one
process should access the resource.

process that has been granted the resource
must release it before it can be granted

to another process.

2. No starvation. If every process that is granted
the resource eventually releases it, every
request must be eventually granted.

40 Dr.K.Geetha

MUTUAL EXCLUSION

Centralised
Approach

Mutual
Exclusion

Token Passing
Approach

DistrIbuted Approach

41 Dr.K.Geetha

CENTRALISED APPROACH

● one of the processes in the system is elected as the
coordinator

● Each process that wants to enter a critical section
must first seek permission from the coordinator

● If no other process is currently in that critical

section, the coordinator can immediately grant
permission to the requesting process.

● Grants permission to only one process at a time
● when a process exits the critical section, it must notify

the coordinator

42 Dr.K.Geetha

DISTRIBUTED APPROACH
All processes that want to enter the same
critical section cooperate with each other
before reaching a decision on which process will
enter the critical section next.

The first algorithm was presented by Lamport

43 Dr.K.Geetha

LAMPORTS ALGORITHM

When a process wants to enter a critical section,
it sends a request message to all other
processes. The message contains the following
information:

1. The process identifier of the process

2. The name of the critical section that the
process wants to enter

3. A unique timestamp generated by the process
for the request message

 44 Dr.K.Geetha

LAMPORTS ALGORITHM

On receiving a request message, a process
either immediately sends back a reply to the
sender or defers sending a reply based on the
following rules:

1. If the receiver processes currently,it simply

queues the request message and defers sending
a reply

45 Dr.K.Geetha

LAMPORTS ALGORITHM
 2.If the receiver process is currently not

executing in the critical section but is waiting for
its turn to enter the critical section,

 it compares the timestamp in the

 If the timestamp of the received request

3. If the receiver process neither is in the critical
section nor is waiting for its turn

to enter the critical section, it immediately
sends back a reply message.

 46 Dr.K.Geetha

LAMPORTS ALGORITHM
Advantages: The algorithm guarantees mutual
exclusion because a process can enter its critical

section only after getting permission from all other
processes.

The algorithm ensures freedom from starvation

Drawbacks

n points of failure

each process should know the identity of all the
processes

A process can enter critical section only after
communicating with all other processes and getting
permission from them.

47 Dr.K.Geetha

LAMPORTS ALGORITHM

Tannenbaum

Modification

 sending “Permission denied” rather than
keeping silent

Improvement

Majority consensus rather than the consensus
of all other processes for critical section entry

48 Dr.K.Geetha

TOKEN-PASSING APPROACH

Mutual exclusion is achieved by using a single
token- a special type of message that entitles its
holder to enter a critical section.

The processes in the system are logically

organized in a ring structure

The token is circulated from one process to
another

49 Dr.K.Geetha

TOKEN-PASSING APPROACH

When a process receives the token, it checks if it

wants to enter a critical section and acts as
follows:

If it wants to enter a critical section, it keeps
the token, enters the critical section, and exits
from the critical section

Then passes the token along the ring to its
neighbor process.

50 Dr.K.Geetha

TOKEN-PASSING APPROACH

● The process can enter only one critical
section when it receives the token.

● If it wants to enter another critical section, it
must wait until it gets the token again.

● If it does not want to enter a critical section,
it just passes the token

● If none of the processes is interested in
entering a critical section, the token simply
keeps circulating around the ring

51 Dr.K.Geetha

TOKEN-PASSING APPROACH

 Advantages

Mutual exclusion is guaranteed by the algorithm

starvation cannot occur

Drawbacks

1. Process Failure

solution:Detection of a failed process can be
easily done by making it a rule that a

process receiving the token from its neighbor
always sends an acknowledgment

message to its neighbor

52 Dr.K.Geetha

TOKEN-PASSING APPROACH

2. Loss of Token

Solution: The monitor process periodically
circulates a "who has the token?" message on

the ring.

This message rotates around the ring from
one process to another.

Every process writes its id

After one cycle no entry means token lost,
new token generated.

53 Dr.K.Geetha

DEAD LOCKS
Sequence of Events

Request

 process first makes a request for the resource

 If the requested resource is not available, the

requesting process must wait until the it is allocated

if the system has multiple units the

allocation of any unit of the type will satisfy the
request

The process can request any no up to maximum

54 Dr.K.Geetha

DEAD LOCKS

 Allocate

 under system control

Release.

Eg:

two tape drives TI and T2;two concurrent processes PI and P2
make requests

1. PI requests for one tape drive and the system allocates TI to it.

2. P2 requests for one tape drive and the system allocates T2 to
it.

3. PI requests for one more tape drive and enters a waiting state
because no tape drive is presently available.

4. P2 requests for one more tape drive and it also enters a
waiting state because no tape drive is presently available.

55 Dr.K.Geetha

DEAD LOCKS

 Necessary Conditions for Deadlock

 Mutual-exclusion condition

 Hold/wait

 No Preemption

 Circular wait

All four conditions must hold simultaneously in
a system for a deadlock to occur.

56 Dr.K.Geetha

DEADLOCK MODELING

1.Directed graph. A directed graph is a pair (N, E), where N is a nonempty
set of nodes and E is a set of directed edges. A directed edge is an ordered
pair (a, b), where a and b are nodes in N.

A

B

D

C

57 Dr.K.Geetha

DEADLOCK MODELING

2. Path. A path is a sequence of nodes (a, b, c, ... , i, j)
of a directed graph such that (a, b), (b, c), ... , (i, j) are
directed edges. Obviously, a path contains at least
two nodes.

58 Dr.K.Geetha

DEADLOCK MODELING

3. Cycle. A cycle is a path whose first and last nodes are
the same.

4. Reachable set. The reachable set of a node a is the
set of all nodes b such that a path exists from a to b.

5. Knot. A knot is a nonempty set K of nodes such that
the reachable set of each nodein K is exactly the set K.
A knot always contains one or more cycles.

An example of a directed graph is shown in Figure

59 Dr.K.Geetha

DEADLOCK MODELING

A directed graph, called a resource allocation
graph, is used in which both the set of nodes
and the set of edges are partitioned into two
types.

PROCESS NODES, RESOURCE NODES,
ASSIGNMENT EDGES, REQUEST EDGES

60 Dr.K.Geetha

61 Dr.K.Geetha

62 Dr.K.Geetha

CYCLE

A cycle is a necessary condition for deadlock.

• If there is only a single unit of each resource
type involved in the cycle, a cycle

is both a necessary and a sufficient condition for
a deadlock to exist.

• If one or more of the resource types involved
in the cycle have more than one unit,

a knot is a sufficient condition for a deadlock to
exist.

 63 Dr.K.Geetha

NECESSARY AND SUFFICIENT
CONDITIONS FOR DEADLOCK

a cycle is a necessary but not sufficient
condition

Cycle Deadlock

64 Dr.K.Geetha

KNOT DEADLOCK

65 Dr.K.Geetha

KNOT

A knot is a set of vertices (processes and resources) such that when

starting at any vertex in the knot, paths lead to all vertices in the knot,

but to no vertices outside the knot.

Detecting knots:

● start with the generalized resource graph

● remove processes that are not waiting an anything

● remove processes that are waiting on resources that are not fully

allocated

● repeat process until no more processes can be removed

● if algorithm is able to remove all processes, no knot is present

66 Dr.K.Geetha

WAIT FOR GRAPH(WFG)

67 Dr.K.Geetha

WFG

Wait For Graph is constructed only when there
is only one unit

A cycle in wait for graph(WFG) is a necessary
and sufficient condition for DLs

68 Dr.K.Geetha

HANDLING DEADLOCKS IN
DISTRIBUTED SYSTEMS

Handling of deadlocks in distributed

systems is more complex than in centralized
systems because the resources, the processes,

and other relevant information are scattered on
different nodes of the system

69 Dr.K.Geetha

D
E

A
D

 L
O

C
K

 H
A

N
D

L
IN

G

S
T

R
A

T
E

G
IE

S

PREVENTION

DETECTION/RECOVERY

AVOIDANCE

70 Dr.K.Geetha

HANDLING DEADLOCKS

1. Avoidance. Resources are carefully allocated to
avoid deadlocks.

2. Prevention. Constraints are imposed on the
ways in which processes request

resources in order to prevent deadlocks.

3. Detection and recovery. Deadlocks are allowed
to occur and a detection algorithm

is used to detect them. After a deadlock is
detected, it is resolved by certain means.

 71 Dr.K.Geetha

HANDLING DEADLOCKS

Two kinds of distributed deadlocks-resource
deadlocks and communication deadlocks.

a resource deadlock occurs when two or more

processes wait permanently for resources held
by each other.

communication deadlock occurs when
Processes are blocked waiting for messages
from other processes in the set in order to start
execution but there are no messages in transit
between them.

72 Dr.K.Geetha

DEADLOCK AVOIDANCE
1. When a process requests for a resource, the
system simply assumes that the request is
granted.

2. The system performs some analysis to decide
whether granting the process's request is safe or
unsafe.

3. The resource is allocated that it is safe to do
so; otherwise the request is deferred.

73 Dr.K.Geetha

safe

74

Reference: Pradeep,K.Sinha”Distributed Operating System Concepts and Design”

Dr.K.Geetha

unsafe

75 Dr.K.Geetha

COLLECTIVE REQUESTS

PREEMPTION ORDERED

REQUESTS

PREVENTION

METHODS

76 Dr.K.Geetha

COLLECTIVE REQUESTS

1.A process must request all of its resources
before it begins execution

2. It requests resources only

when it holds no other resources

Disadvantages

starvation

poor utilization

accounting

77 Dr.K.Geetha

ORDERED REQUESTS

Efficient method r1=0 r2=1 r3=3

resources are assigned with numbers p1=r2 p1r3

process can request only with high number

Problems

 wastage of resources

 Reordering will require reprogramming of
jobs.

78 Dr.K.Geetha

PREEMPTION

if resource un available

1. All the resources held by the process are
taken away (preempted) from it and the
process is blocked.

2. The process is unblocked when the resource
requested by it and the resources preempted
from it become available and can be
allocated to it.

79 Dr.K.Geetha

PREEMPTION

if resource unavailable

3. the system checks if the requested
resource is currently held by a process that is
blocked, waiting for some other resource. If
so, the requested resource is taken away
(preempted) from the waiting process and
given to the requesting process.

80 Dr.K.Geetha

PREEMPTION

Rosenkrantz et at proposed the following
deadlock prevention schemes

1. Wait-die scheme.

2. Wait-wound scheme

81 Dr.K.Geetha

DETECTION/RECOVERY

Maintaining WFG and searching for cycles in the
WFG.

Construct a separate WFG for each site of the
system

Convert the resource allocation graph
constructed in step 1 to a corresponding WFG

by removing the resource nodes and collapsing
the appropriate edges.

Take the union of the WFGs of all sites and
construct a single global WFG.

 82 Dr.K.Geetha

The main problem is

 how to maintain WFG

Three commonly used techniques for organizing
the WFG in

a distributed system are centralized,
hierarchical, and distributed.

DETECTION/RECOVERY

83 Dr.K.Geetha

The detection depends on thefollowing
properties

1. Progress property- all deadlocks must be
detected in a

finite amount of time.

2. Safety property. If a deadlock is detected,
it must indeed exist.

DETECTION/RECOVERY

84 Dr.K.Geetha

Message delays and

out-of-date WFGs sometimes cause false cycles
to be detected, resulting in the detection of
deadlocks that do not actually exist. Such
deadlocks are called

phantom deadlocks

DETECTION/RECOVERY

85 Dr.K.Geetha

DETECTION/RECOVERY

Centralized Approach for Deadlock Detection

INTIMATION OF EDGE ADDED to detect
deadlocks

Continuous transfer.

Periodic Transfer

Transfer on request

86 Dr.K.Geetha

DETECTION/RECOVERY

 Fully Distributed Approaches for Deadlock Detection.

each site of the system shares equal responsibility for
deadlock detection.

1. WFG Algorithm
2. Probe based Algorithm

WFG constructionof wait for Graphs

Probe base means

sendng probes fromoneode to another if resource not
available

87 Dr.K.Geetha

PROBE BASED-CHANDY MISRA
HASS ALGORITHM

Reference: Pradeep,K.Sinha ”Distributed Operating System Concepts and Design”

Dr.K.Geetha

WAYS FOR RECOVERY FROM
DEADLOCK

Ways for Recovery from Deadlock

 Asking for operator intervention

 Termination of process

 Rollback of process

Issues:

 Selection of a victim

 cost Minmization

 Transaction mechanism

89 Dr.K.Geetha

ELECTION ALGORITHMS

Co-ordinator Election

Election algorithms are based on

1. Each process in the system has a unique priority
number.

2. the process having the highest priority number
among the currently active processes is elected as the
coordinator.

3. On recovery, a failed process can take appropriate
actions to rejoin the set of

active processes.

 90 Dr.K.Geetha

THE BULLY ALGORITHM

Proposed by Garcia-Molina

A process sends a request message to the coordinator

Does not receive a reply within a fixed timeout period

 it is assumed that the coordinator has failed.

Election Message

Alive Message

PI, P2,P3 ,P4 , and P5 and their priority numbers are

1, 2, 3, 4, and 5 respectively

91 Dr.K.Geetha

THE BULLY ALGORITHM

1. Obviously, P5 is the coordinator in the
starting state.

2. Suppose P5 crashes.

3. Process P3 sends a request message to Ps and
does not receive a reply within the

fixed timeout period.

4. Process P3 assumes that P5 has crashed and
initiates an election by sending an

election message to P4 and P5
92 Dr.K.Geetha

THE BULLY ALGORITHM

5. When P4 receives P3's election message, it
sends an alive message to P3'

informing that it is alive and will take over the
election activity. Process Ps cannot

respond to P3's election message because it is
down.

6. Now P4 holds an election by sending an
election message to Ps-

93 Dr.K.Geetha

THE BULLY ALGORITHM

Process P5 does not respond to P4's election
message because it is down, and

therefore, P4 wins the election and sends a
coordinator message to PI' P2 , and P3,

informing them that from now on it is the new
coordinator.

Now suppose P2 recovers from failure and
initiates an election by sending an

election message to P3' P4 , and P5.
94 Dr.K.Geetha

A RING ALGORITHM

All the processes in the system are organized in
a logical ring.

The ring is unidirectional in the

All messages related to the election algorithm
are always passed only in one direction

If the successor of the sender process is down,
the sender can skip over the successor, or the
one after that, until an active member is
located. The algorithm works as follows.

95 Dr.K.Geetha

A RING ALGORITHM

When a process (say Pi) sends a request
message to the current coordinator and does

not receive a reply within a fixed timeout
period, it assumes that the coordinator has

crashed. Therefore it initiates an election

On receiving the election message, the
successor appends its own priority number to
the message and passes it on to the next active
member in the ring.

 96 Dr.K.Geetha

A RING ALGORITHM

This member appends its own priority number
to the message and forwards it to its own

successor.

The election message circulates over the ring
from one active process to another and returns
back to process Pi.

Process Pi recognizes the message as its own
election message.

it elects the process having the highest priority
number as the new coordinator.

 97 Dr.K.Geetha

PROCESS MIGRATION

Movement of a process from its current location

to the processor to which it has been assigned.

1. Selection of a process that should be
migrated

2. Selection of the destination node to which
the selected process should be

migrated

3. Actual transfer of the selected process to the
destination node

 98 Dr.K.Geetha

Process
Migration

Selection of a
node

Actual
transfer

Selection of a
process

99 Dr.K.Geetha

PROCESS MIGRATION

100 Dr.K.Geetha

Desirable Features of a Good Process Migration
Mechanism

Non-Preemptive Process Migration:

A process may be migrated either before it
starts executing on its source node

Preemptive process migration:

The transfer takes place during the course of its
execution.

101 Dr.K.Geetha

Desirable Features of a Good Process Migration
Mechanism

Transparency
1. Object access level.
2. System call and interprocess communication level.

Minimal Interference

Minimal Residual Dependencies

Efficiency

1. The time required for migrating a process
2. The cost of locating an object
3. The cost of supporting remote execution

once the process is migrated

 102 Dr.K.Geetha

Desirable Features of a Good Process Migration
Mechanism

 Robustness

Failure of a node other than the one on which a
process is currently running should not in any
way affect the accessibility or execution of that
process.

Communication between Co-Processes of a Job

103 Dr.K.Geetha

PROCESS MIGRATING
MECHANISMS

Major sub activities involved in process migration

1. Freezing the process on its source node and
restarting it on its destination node

2. Transferring the process's address space from its
source node to its destination node

3. Forwarding messages meant for the migrant process

4. Handling communication between cooperating
processes

104 Dr.K.Geetha

MECHANISMS FOR FREEZING AND
RESTARTING A PROCESS

Immediate and Delayed Blocking of the Process.

Fast and Slow I/O Operations

Information about Open Files

Reinstating the Process on its Destination Node

Address Space Transfer Mechanisms

105 Dr.K.Geetha

TOTAL FREEZING

106 Dr.K.Geetha

PRE TRANSFER MECHANISM

107 Dr.K.Geetha

TRANSFER ON REFERENCE

108 Dr.K.Geetha

MESSAGE-FORWARDING
MECHANISMS

Type 1: Messages received at the source node after
the process's execution has been stopped on its
source node and the process's execution has not yet
been started on its destination node

Type 2: Messages received at the source node after
the process's execution has started on its destination
node

Type 3: Messages that are to be sent to the migrant
process from any other node after it has started
executing on the destination node

 109 Dr.K.Geetha

MECHANISM OF RESENDING THE
MESSAGE

In this method, messages of types 1 and 2 are
returned to the sender as not deliverable or are
simply dropped, with the assurance that the
sender of the message is storing a copy of the
data and is prepared to retransmit it.

110 Dr.K.Geetha

ORIGIN SITE MECHANISM.

The process identifier of these systems has the
process's origin site embedded in it

Each site is responsible for keeping information
about the current locations of all the processes
created on it.

A process's current location can be simply obtained
by consulting its origin site.

The origin site then forwards the message to the
process's current location.

111 Dr.K.Geetha

LINK TRAVERSAL MECHANISM.

To redirect the messages of types 2 and 3, a
forwarding address known as link is

left at the source node pointing to the
destination node of the migrant process using
two componenets

1. Process id
2. Last known location

112 Dr.K.Geetha

LINK UPDATE MECHANISM.

The source node sends link-update messages to
the kernels controlling all of the migrant
process's communication partners.

These link update messages tell the new address
of each link held by the migrant process and are
acknowledged.

113 Dr.K.Geetha

MECHANISMS FOR HANDLING
COPROCESSES

 Necessity to provide communication between a
process (parent) and its sub processes

(children), which might have been migrated and
placed on different nodes

Two different mechanisms :

Disallowing Separation of Co-processes

Home Node or Origin Site Concept

114 Dr.K.Geetha

PROCESS MIGRATION IN
HETEROGENEOUS SYSTEMS

Data translation

Maguire and Smith [1988] proposed the use of the
external data representation

A standard representation is used for the transport of
data, and each processor

needs only to be able to convert data to and from the
standard form

External data representation format is called serializing,
and the reverse process is called deserializing.

115 Dr.K.Geetha

ADVANTAGES OF PROCESS
MIGRATION

Reducing average response time of processes.

Speeding up individual jobs

Gaining higher throughput

Utilizing resources effectively

Reducing network traffic

Improving system reliability

Improving system security

116 Dr.K.Geetha

THREADS
Way to improve application performance through
parallelism

In traditional operating systems the basic unit of CPU
utilization is a process. Each process has its own
program counter, its own register states, its own stack,
and its own address space.

in operating systems with threads facility, the basic unit
of CPU utilization is a thread. In these operating
systems, a process consists of an address space

and one or more threads of control

 117 Dr.K.Geetha

THREADS

Each thread of a process has its own

program counter, its own register states, and its
own stack.

share the same address space.

share the same global variables.

share the same set of operating system
resources, such as openfiles, child processes,
semaphores, signals, accounting information,
and so on.

118 Dr.K.Geetha

THREADS

Due to the sharing of address space, there is no
protection between the threads of a process.
But a process is always owned by a single user.

 If protection is required between two threads
of a process, it is preferable to put them in
different processes, instead of putting them in a
single process.

 119 Dr.K.Geetha

THREADS

 Thread can be in anyone of several states:

running, blocked, ready, or terminated.

 Threads are referred to as lightweight
processes

 Traditional processes are referred to as
heavyweight processes.

 A process having a single thread corresponds
to a process of a traditional operating system

120 Dr.K.Geetha

MOTIVATIONS FOR USING
THREADS

1. The overheads involved in creating a new
process are greater than those of creating a new
thread within a process.

2. Switching between threads sharing the same
address space is cheaper than switching
between processes that have their own address
spaces.

3. Threads allow parallelism

4. Resource sharing can be performed
121 Dr.K.Geetha

MODELS FOR ORGANIZING
THREADS

122

Dispatcher-

workers Model Team Model Pipeline Model

Dr.K.Geetha

ISSUES IN DESIGNING A THREADS
PACKAGE Threads Creation

 Static or dynamic

Threads Termination

 Destroy itself or killed from outside

Threads Synchronization

 Mutex variables

 Conditional variables

Threads Scheduling

 Priority assignment facility.

 Flexibility to vary quantum size dynamically

 Handoff scheduling

 Affinity scheduling.

123 Dr.K.Geetha

IMPLEMENTING A THREADS
PACKAGE

can be implemented either in user space or in
the kernel

124

Reference: Pradeep,K.Sinha”Distributed Operating System Concepts and Design”

Dr.K.Geetha

