## CAMA 15C: Mathematics - I



## Dr S. Srinivasan

Assistant Professor,
Department of Mathematics ,
Periyar Arts College,
Cuddalore,
Tamil nadu.
Email: smrail@gmail.com
Cell: 7010939424

## Algebraic equation

## Let us consider

$f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$.
This a polynomial in $x$ of degree $n$ provided $a_{0} \neq 0$.
The equation is obtained by putting $f(x)=0$ is called an
algebraic equation of degree $n$.

## Algebraic equation

Let us consider

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n} .
$$

This a polynomial in $x$ of degree $n$ provided $a_{0} \neq 0$.
The equation is obtained by putting $f(x)=0$ is called an
algebraic equation of degree $n$.

## Algebraic equation

Let us consider

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n} .
$$

This a polynomial in $x$ of degree $n$ provided $a_{0} \neq 0$.
The equation is obtained by putting $f(x)=0$ is called an
algebraic equation of degree $n$.

## Algebraic equation

Let us consider

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n} .
$$

This a polynomial in $x$ of degree $n$ provided $a_{0} \neq 0$.
The equation is obtained by putting $f(x)=0$ is called an
algebraic equation of degree $n$.

## Algebraic equation

Let us consider
$f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$.
This a polynomial in $x$ of degree $n$ provided $a_{0} \neq 0$.
The equation is obtained by putting $f(x)=0$ is called an
algebraic equation of degree $n$.

## Fundamental Theorem

1. Every polynomial equation $f(x)=0$ has at least one root
real or complex.
2. Every polynomial equation $f(x)=0$ of $n^{t h}$ degree has $n$ roots
and only $n$ roots.

## Fundamental Theorem

1. Every polynomial equation $f(x)=0$ has at least one root real or complex.
2. Every polynomial equation $f(x)=0$ of $n^{t h}$ degree has $n$ roots and only $n$ roots.

## Fundamental Theorem

1. Every polynomial equation $f(x)=0$ has at least one root real or complex.
2. Every polynomial equation $f(x)=0$ of $n^{\text {th }}$ degree has $n$ roots and only $n$ roots.

## Fundamental Theorem

1. Every polynomial equation $f(x)=0$ has at least one root real or complex.
2. Every polynomial equation $f(x)=0$ of $n^{t h}$ degree has $n$ roots and only $n$ roots.

## Types of Problems

## 1. Relation between the roots and coefficient of equations.

2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

## Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

### 2.1. Relation between the roots and coefficient of equations

Given equation be
$a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.

Divide the equation by $a_{0}$, then


### 2.1. Relation between the roots and coefficient of equations

Given equation be

$$
a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0
$$

Divide the equation by $a_{0}$, then


### 2.1. Relation between the roots and coefficient of equations

Given equation be
$a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.

Divide the equation by $a_{0}$, then


### 2.1. Relation between the roots and coefficient of

 equationsGiven equation be
$a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.

Divide the equation by $a_{0}$, then

$$
x^{n}+\frac{a_{1}}{a_{0}} x^{n-1}+\frac{a_{2}}{a_{0}} x^{n-2}+\ldots+\frac{a_{n-1}}{a_{0}} x+\frac{a_{n}}{a_{0}}=0
$$

### 2.1. Relation between the roots and coefficient of

 equationsGiven equation be
$a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.
Divide the equation by $a_{0}$, then

$$
x^{n}+\frac{a_{1}}{a_{0}} x^{n-1}+\frac{a_{2}}{a_{0}} x^{n-2}+\ldots+\frac{a_{n-1}}{a_{0}} x+\frac{a_{n}}{a_{0}}=0 .
$$

i.e., $x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}=0 . \quad\left(\right.$ say $\left.p_{i}=\frac{a_{i}}{a_{0}}\right)$

### 2.1. Relation between the roots and coefficient of

 equationsGiven equation be
$a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.
Divide the equation by $a_{0}$, then

$$
x^{n}+\frac{a_{1}}{a_{0}} x^{n-1}+\frac{a_{2}}{a_{0}} x^{n-2}+\ldots+\frac{a_{n-1}}{a_{0}} x+\frac{a_{n}}{a_{0}}=0 .
$$

i.e., $x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}=0 . \quad\left(\right.$ say $\left.p_{i}=\frac{a_{i}}{a_{0}}\right)$

Relation between the roots and coefficient of equ:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.
Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equ:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.

Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equ:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.
Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equa

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.

Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equa

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.
Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equ:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.

Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

Relation between the roots and coefficient of equ:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, be its roots.

Then, we have
$S_{1}=\sum \alpha_{1}=-p_{1}$
$S_{2}=\sum \alpha_{1} \alpha_{2}=p_{2}$
$S_{3}=\sum \alpha_{1} \alpha_{2} \alpha_{3}=-p_{3}$
$S_{n}=\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} p_{n}$

## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.

## Solution.

Given $2 x^{2}+3 x+5=0$.


We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and


## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.
Solution.

Given $2 x^{2}+3 x+5=0$.

Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and


## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.
Solution.

Given $2 x^{2}+3 x+5=0$.


Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and


## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $2 x^{2}+3 x+5=0$.
$x^{2}+\frac{3}{2} x+\frac{5}{2}=0$.
Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and


## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $2 x^{2}+3 x+5=0$.
$x^{2}+\frac{3}{2} x+\frac{5}{2}=0$.
Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and

## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.
Solution.

Given $2 x^{2}+3 x+5=0$.
$x^{2}+\frac{3}{2} x+\frac{5}{2}=0$.
Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and

## Problem 1.

If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+5=0$, then
find $\alpha+\beta, \alpha \beta$.
Solution.

Given $2 x^{2}+3 x+5=0$.
$x^{2}+\frac{3}{2} x+\frac{5}{2}=0$.
Here $p_{1}=\frac{3}{2}$ and $p_{2}=\frac{5}{2}$
We know that $\alpha+\beta=-p_{1}=-\frac{3}{2}$ and

$$
\alpha \beta=p_{2}=\frac{5}{2}
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

## Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$
We know that $\alpha+\beta=-p_{1}=-5$ and

$$
(\alpha=-3 \text { and } \beta=-2)
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and

$$
(\alpha=-3 \text { and } \beta=-2)
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and

$$
(\alpha=-3 \text { and } \beta=-2)
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and $(\alpha=-3$ and $\beta=-2)$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and

$$
(\alpha=-3 \text { and } \beta=-2)
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.

Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and

$$
\alpha \beta=p_{2}=6
$$

## Problem 2.

If $\alpha$ and $\beta$ are the roots of $x^{2}+5 x+6=0$, then
find $\alpha+\beta, \alpha \beta$.
Solution.

Given $x^{2}+5 x+6=0$.

Here $p_{1}=5$ and $p_{2}=6$

We know that $\alpha+\beta=-p_{1}=-5$ and

$$
\begin{gathered}
\alpha \beta=p_{2}=6 \\
(\alpha=-3 \text { and } \beta=-2)
\end{gathered}
$$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.

## Solution.



We know that

$$
\alpha \beta+\beta \gamma+\gamma \alpha=p_{2}=c / a
$$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.
Solution.

Given $a x^{3}+b x^{2}+c x+d=0$.

We know that $\quad \alpha+\beta+\gamma=-p_{1}=-b / a$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.
Solution.
Given $a x^{3}+b x^{2}+c x+d=0$.

We know that

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.

## Solution.

Given $a x^{3}+b x^{2}+c x+d=0$.
$x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.

## Solution.

Given $a x^{3}+b x^{2}+c x+d=0$.
$x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0$
We know that

$$
\alpha+\beta+\gamma=-p_{1}=-b / a
$$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.

## Solution.

Given $a x^{3}+b x^{2}+c x+d=0$.
$x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0$
We know that

$$
\alpha+\beta+\gamma=-p_{1}=-b / a
$$

$$
\alpha \beta+\beta \gamma+\gamma \alpha=p_{2}=c / a
$$

## Problem 3.

If $\alpha, \beta$ and $\gamma$ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then
find $\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \alpha \beta \gamma$.

## Solution.

Given $a x^{3}+b x^{2}+c x+d=0$.
$x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0$
We know that

$$
\begin{aligned}
\alpha+\beta+\gamma & =-p_{1}=-b / a \\
\alpha \beta+\beta \gamma+\gamma \alpha & =p_{2}=c / a \\
\alpha \beta \gamma & =-p_{3}=-d / a
\end{aligned}
$$

### 2.2 Imaginary roots and irrational roots

1. In an equation with rational coefficients, imaginary roots
occur in pairs.
2. In an equation with rational coefficients, irrational roots
occur in pairs.

### 2.2 Imaginary roots and irrational roots

1. In an equation with rational coefficients, imaginary roots occur in pairs.
2. In an equation with rational coefficients, irrational roots occur in pairs.

### 2.2 Imaginary roots and irrational roots

1. In an equation with rational coefficients, imaginary roots occur in pairs.
2. In an equation with rational coefficients, irrational roots
occur in pairs.

### 2.2 Imaginary roots and irrational roots

1. In an equation with rational coefficients, imaginary roots occur in pairs.
2. In an equation with rational coefficients, irrational roots occur in pairs.

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are


## Therefore, the required equation is <br> $\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$
Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are


## Therefore, the required equation is <br> $\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$
Solution.
Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are


Therefore, the required equation is
$[x-(\sqrt{3}+\sqrt{5})][x-(\sqrt{3}-\sqrt{5})][x-(-\sqrt{3}+\sqrt{5})][x-(-\sqrt{3}-\sqrt{5})]=0$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are

## Therefore, the required equation is <br> $\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$
-\sqrt{3}+\sqrt{5},
$$

Therefore, the required equation is
$\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are

$$
-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text { and }
$$

Therefore, the required equation is
$\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are

$$
-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text { and }-\sqrt{3}-\sqrt{5}
$$

Therefore, the required equation is
$\square$

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are

$$
-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text { and }-\sqrt{3}-\sqrt{5}
$$

Therefore, the required equation is

## Problems.

Problem 1. Form the equation, one of whose root is $\sqrt{3}+\sqrt{5}$

## Solution.

Given $\sqrt{3}+\sqrt{5}$ is one of whose root of the required equation.
The other root of the same equation are

$$
-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text { and }-\sqrt{3}-\sqrt{5}
$$

Therefore, the required equation is
$[x-(\sqrt{3}+\sqrt{5})][x-(\sqrt{3}-\sqrt{5})][x-(-\sqrt{3}+\sqrt{5})][x-(-\sqrt{3}-\sqrt{5})]=0$

$$
[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0
$$

$$
\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0
$$

$$
\left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0
$$

$$
\left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0
$$

$$
\left[\left(x^{2}-2\right)-2 x \sqrt{3}\right]\left[\left(x^{2}-2\right)+2 x \sqrt{3}\right]=0
$$

$$
\left[\left(x^{2}-2\right)^{2}-(2 x \sqrt{3})^{2}\right]=0
$$

$$
x^{4}-4 x^{2}+4-12 x^{2}=0
$$

$$
\begin{gathered}
{[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
{\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right)
\end{gathered}
$$



$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0
\end{aligned}
$$

$$
\left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0
$$



$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0 \\
& \left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0
\end{aligned}
$$



$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0 \\
& \left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0 \\
& {\left[\left(x^{2}-2\right)-2 x \sqrt{3}\right]\left[\left(x^{2}-2\right)+2 x \sqrt{3}\right]=0}
\end{aligned}
$$

$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0 \\
& \left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0 \\
& {\left[\left(x^{2}-2\right)-2 x \sqrt{3}\right]\left[\left(x^{2}-2\right)+2 x \sqrt{3}\right]=0} \\
& {\left[\left(x^{2}-2\right)^{2}-(2 x \sqrt{3})^{2}\right]=0}
\end{aligned}
$$

$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0 \\
& \left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0 \\
& {\left[\left(x^{2}-2\right)-2 x \sqrt{3}\right]\left[\left(x^{2}-2\right)+2 x \sqrt{3}\right]=0} \\
& {\left[\left(x^{2}-2\right)^{2}-(2 x \sqrt{3})^{2}\right]=0} \\
& x^{4}-4 x^{2}+4-12 x^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& {[(x-\sqrt{3})+\sqrt{5}][(x-\sqrt{3})-\sqrt{5}][(x+\sqrt{3})+\sqrt{5}][(x+\sqrt{3})-\sqrt{5}]=0} \\
& {\left[(x-\sqrt{3})^{2}-(\sqrt{5})^{2}\right]\left[(x+\sqrt{3})^{2}-(\sqrt{5})^{2}\right]=0} \\
& \quad\left(\quad(a+b)(a-b)=a^{2}-b^{2}\right) \\
& \left(x^{2}-2 x \sqrt{3}+3-5\right)\left(x^{2}+2 x \sqrt{3}+3-5\right)=0 \\
& \left(x^{2}-2 x \sqrt{3}-2\right)\left(x^{2}+2 x \sqrt{3}-2\right)=0 \\
& {\left[\left(x^{2}-2\right)-2 x \sqrt{3}\right]\left[\left(x^{2}-2\right)+2 x \sqrt{3}\right]=0} \\
& {\left[\left(x^{2}-2\right)^{2}-(2 x \sqrt{3})^{2}\right]=0} \\
& x^{4}-4 x^{2}+4-12 x^{2}=0 \\
& \therefore x^{4}-16 x^{2}+4=0
\end{aligned}
$$

Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root. Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$
$x^{2}+2 x+1+4=0$


Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root. Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$


Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root. Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$


Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.
Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation. The factor corresponding to the two roots is


Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.

Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is


Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.

Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$

Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.

Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$

Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.

Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$
$x^{2}+2 x+1+4=0$

Problem 2. Solve $x^{4}-12 x-5=0$ given $-1+2 i$ is a root.

Solution.

Since $-1+2 i$ is a root, $-1-2 i$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-2 i)(x+1+2 i)=0$
$(x+1)^{2}-(2 i)^{2}=0$
$x^{2}+2 x+1+4=0$
$x^{2}+2 x+5=0$

Now divide $x^{4}-12 x-5=0$ by $x^{2}+2 x+5=0$


Now divide $x^{4}-12 x-5=0$ by $x^{2}+2 x+5=0$

$\left.x^{2}+2 x+5\right)$| $x^{2}-2 x-1$ |
| ---: |
| $\frac{x^{4}-12 x-5}{}$ |
| $\frac{-x^{4}-2 x^{3}-5 x^{2}}{-2 x^{3}-5 x^{2}-12 x}$ |
| $\frac{2 x^{3}+4 x^{2}+10 x}{-x^{2}-2 x-5}$ |
| $\frac{x^{2}+2 x+5}{0}$ |

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}-2 x-1=0 \\
& x=\frac{2 \pm \sqrt{4+4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{2 \pm 2 \sqrt{2}}{2} \\
& x=1 \pm \sqrt{2}
\end{aligned}
$$

$$
\text { The roots are }-1 \pm 2 i, 1 \pm \sqrt{2} \text {. }
$$

$\therefore$ The other roots are given by

$$
x^{2}-2 x-1=0 \quad\left(a x^{2}+b x+c=0\right)
$$


$\therefore$ The other roots are given by

$$
\begin{array}{lr}
x^{2}-2 x-1=0 & \left(a x^{2}+b x+c=0\right) \\
x=\frac{2 \pm \sqrt{4+4}}{2} & \left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
\end{array}
$$


$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}-2 x-1=0 \\
& x=\frac{2 \pm \sqrt{4+4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{2 \pm 2 \sqrt{2}}{2}
\end{aligned}
$$

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}-2 x-1=0 \\
& x=\frac{2 \pm \sqrt{4+4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{2 \pm 2 \sqrt{2}}{2} \\
& x=1 \pm \sqrt{2}
\end{aligned}
$$

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}-2 x-1=0 \\
& x=\frac{2 \pm \sqrt{4+4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{2 \pm 2 \sqrt{2}}{2} \\
& x=1 \pm \sqrt{2}
\end{aligned}
$$

$\therefore$ The roots are $-1 \pm 2 i, 1 \pm \sqrt{2}$.

Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is


Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

## The factor corresponding to the two roots is



Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

## The factor corresponding to the two roots is



Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

## The factor corresponding to the two roots is



Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is


Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x-2-i \sqrt{3})(x-2+i \sqrt{3})=0$
$(x-2)^{2}-(i \sqrt{3})^{2}=0$

Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x-2-i \sqrt{3})(x-2+i \sqrt{3})=0$
$(x-2)^{2}-(i \sqrt{3})^{2}=0$

Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$
(x-2-i \sqrt{3})(x-2+i \sqrt{3})=0
$$

$$
(x-2)^{2}-(i \sqrt{3})^{2}=0
$$

$$
x^{2}-4 x+4+3=0
$$

Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$
\begin{aligned}
& (x-2-i \sqrt{3})(x-2+i \sqrt{3})=0 \\
& (x-2)^{2}-(i \sqrt{3})^{2}=0 \\
& x^{2}-4 x+4+3=0 \\
& x^{2}-4 x+7=0
\end{aligned}
$$

Problem 3. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ given that

$$
2+i \sqrt{3} \text { is a root. }
$$

## Solution.

Since $2+i \sqrt{3}$ is a root, $2-i \sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$
\begin{aligned}
& (x-2-i \sqrt{3})(x-2+i \sqrt{3})=0 \\
& (x-2)^{2}-(i \sqrt{3})^{2}=0 \\
& x^{2}-4 x+4+3=0 \\
& x^{2}-4 x+7=0
\end{aligned}
$$

Now divide $x^{4}-4 x^{2}+8 x+35=0$ by $x^{2}-4 x+7=0$


Now divide $x^{4}-4 x^{2}+8 x+35=0$ by $x^{2}-4 x+7=0$

$$
\left.x^{2}-4 x+7\right) \begin{array}{r}
x^{2}+4 x+5 \\
\cline { 2 - 3 } \begin{array}{r}
x^{4} \\
-x^{4}+4 x^{3}-7 x^{2}
\end{array}+8 x+35 \\
\hline 4 x^{3}-11 x^{2}+8 x \\
-4 x^{3}+16 x^{2}-28 x \\
5 x^{2}-20 x+35 \\
-5 x^{2}+20 x-35
\end{array}
$$

$\therefore$ The other roots are given by


The roots are $2 \pm i \sqrt{3},-2 \pm i$.
$\therefore$ The other roots are given by

$$
x^{2}+4 x+5=0 \quad\left(a x^{2}+b x+c=0\right)
$$


$\therefore$ The other roots are given by

$$
\begin{array}{lc}
x^{2}+4 x+5=0 & \left(a x^{2}+b x+c=0\right) \\
x=\frac{-4 \pm \sqrt{16-20}}{2} & \left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
\end{array}
$$

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}+4 x+5=0 \\
& x=\frac{-4 \pm \sqrt{16-20}}{2} \quad\left(x x^{2}+b x+c=0\right) \\
& x=\frac{-4 \pm 2 i}{2}
\end{aligned}
$$

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}+4 x+5=0 \\
& x=\frac{-4 \pm \sqrt{16-20}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{-4 \pm 2 i}{2} \\
& x=-2 \pm i
\end{aligned}
$$

$\therefore$ The other roots are given by

$$
\begin{aligned}
& x^{2}+4 x+5=0 \\
& x=\frac{-4 \pm \sqrt{16-20}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& x=\frac{-4 \pm 2 i}{2} \\
& x=-2 \pm i
\end{aligned}
$$

$\therefore$ The roots are $2 \pm i \sqrt{3},-2 \pm i$.

Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.



The factor corresponding to the two roots is


Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.



## The factor corresponding to the two roots is



Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

## The factor corresponding to the two roots is



Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

## The factor corresponding to the two roots is



Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is


Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-\sqrt{5})(x+1+\sqrt{5})=0$

Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-\sqrt{5})(x+1+\sqrt{5})=0$
$(x+1)^{2}-(\sqrt{5})^{2}=0$

Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is
$(x+1-\sqrt{5})(x+1+\sqrt{5})=0$
$(x+1)^{2}-(\sqrt{5})^{2}=0$
$x^{2}+2 x+1-5=0$

Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$
(x+1-\sqrt{5})(x+1+\sqrt{5})=0
$$

$$
(x+1)^{2}-(\sqrt{5})^{2}=0
$$

$$
x^{2}+2 x+1-5=0
$$

$$
x^{2}+2 x-4=0
$$

Problem 4. Solve the equation $x^{4}-11 x^{2}+2 x+12=0$ given that

$$
\sqrt{5}-1 \text { is a root. }
$$

## Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$
(x+1-\sqrt{5})(x+1+\sqrt{5})=0
$$

$$
(x+1)^{2}-(\sqrt{5})^{2}=0
$$

$$
x^{2}+2 x+1-5=0
$$

$$
x^{2}+2 x-4=0
$$

Now divide $x^{4}-11 x^{2}+2 x+12=0$ by $x^{2}+2 x-4=0$


Now divide $x^{4}-11 x^{2}+2 x+12=0$ by $x^{2}+2 x-4=0$

$$
\begin{aligned}
& x^{2}-2 x-3 \\
& \left.x^{2}+2 x-4\right) \quad x^{4} \quad-11 x^{2}+2 x+12 \\
& \frac{-x^{4}-2 x^{3}+4 x^{2}}{-2 x^{3}-7 x^{2}}+2 x \\
& 2 x^{3}+4 x^{2}-8 x \\
& -3 x^{2}-6 x+12 \\
& 3 x^{2}+6 x-12
\end{aligned}
$$

$\therefore$ The other roots are given by
$x^{2}-2 x-3=0$

$x=-1,3$

$$
\left(x^{2}-(\alpha+\beta) x+\alpha \beta=0\right)
$$

$$
(\alpha \beta=c ; \alpha+\beta=-b)
$$

$$
(\alpha=-1 ; \beta=3)
$$

The roots are $\pm \sqrt{5}-1,-1,3$.
$\therefore$ The other roots are given by

$$
x^{2}-2 x-3=0 \quad\left(x^{2}-(\alpha+\beta) x+\alpha \beta=0\right)
$$

$$
(x-3)(x+1)=0
$$



$$
(\alpha=-1 ; \beta=3)
$$

$\therefore$ The other roots are given by

$$
\begin{array}{ll}
x^{2}-2 x-3=0 & \left(x^{2}-(\alpha+\beta) x+\alpha \beta=0\right) \\
(x-3)(x+1)=0 & (\alpha \beta=c ; \alpha+\beta=-b)
\end{array}
$$


$\therefore$ The other roots are given by

$$
\begin{array}{lc}
x^{2}-2 x-3=0 & \left(x^{2}-(\alpha+\beta) x+\alpha \beta=0\right) \\
(x-3)(x+1)=0 & (\alpha \beta=c ; \alpha+\beta=-b) \\
x=-1,3 & (\alpha=-1 ; \beta=3)
\end{array}
$$

$\therefore$ The other roots are given by

$$
\begin{array}{lc}
x^{2}-2 x-3=0 & \left(x^{2}-(\alpha+\beta) x+\alpha \beta=0\right) \\
(x-3)(x+1)=0 & (\alpha \beta=c ; \alpha+\beta=-b) \\
x=-1,3 & (\alpha=-1 ; \beta=3)
\end{array}
$$

$\therefore$ The roots are $\pm \sqrt{5}-1,-1,3$.

## Problems.

5. Solve the equation $x^{4}-5 x^{3}+4 x^{2}+8 x-8=0$ given that $1-\sqrt{5}$ is a root.
6. Solve the equation $x^{4}+2 x^{3}-5 x^{2}+6 x+2=0$ given that $1+\sqrt{-1}$ is a root.
7. Solve the equation $x^{4}+2 x^{2}-16 x+77=0$ given that
$-2+\sqrt{-7}$ is a root.
8. Solve the equation $3 x^{5}-4 x^{4}-42 x^{3}+52 x^{2}+27 x-36=0$ given that $\sqrt{2}+\sqrt{5}$ is a root.
