CAMA 15C : Mathematics - I

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Dr S. Srinivasan

Assistant Professor, Department of Mathematics , Periyar Arts College, Cuddalore, Tamil nadu.

Email: smrail@gmail.com Cell: 7010939424

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n.$$

This a polynomial in x of degree *n* provided $a_0 \neq 0$.

The equation is obtained by putting f(x) = 0 is called an

algebraic equation of degree n.

イロト イボト イヨト イヨト

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n.$$

This a polynomial in x of degree *n* provided $a_0 \neq 0$.

The equation is obtained by putting f(x) = 0 is called an

algebraic equation of degree n.

イロト イボト イヨト イヨト

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n.$$

This a polynomial in x of degree n provided $a_0 \neq 0$.

The equation is obtained by putting f(x) = 0 is called an

algebraic equation of degree n.

イロト イボト イヨト イヨト

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n.$$

This a polynomial in x of degree n provided $a_0 \neq 0$.

The equation is obtained by putting f(x) = 0 is called an

algebraic equation of degree n.

(日)

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n.$$

This a polynomial in x of degree n provided $a_0 \neq 0$.

The equation is obtained by putting f(x) = 0 is called an

algebraic equation of degree n.

イロン イヨン イヨン

1. Every polynomial equation f(x) = 0 has at least one root

real or complex.

2. Every polynomial equation f(x) = 0 of n^{th} degree has n roots and only n roots.

(日)

- Every polynomial equation f(x) = 0 has at least one root real or complex.
- Every polynomial equation f(x) = 0 of nth degree has n roots and only n roots.

イロト イポト イヨト イヨト

- Every polynomial equation f(x) = 0 has at least one root real or complex.
- 2. Every polynomial equation f(x) = 0 of n^{th} degree has *n* roots

and only *n* roots.

イロト 不得 トイラト イラト 一日

- Every polynomial equation f(x) = 0 has at least one root real or complex.
- 2. Every polynomial equation f(x) = 0 of n^{th} degree has n roots and only n roots.

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

★ ∃ ► < ∃ ►</p>

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

A B b A B b

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

- 1. Relation between the roots and coefficient of equations.
- 2. Imaginary roots and irrational roots.
- 3. Transformation of equations.
- 4. Reciprocal equations.
- 5. Newton's method.

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

 $x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$

i.e., $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$. (say $p_i = \frac{a_i}{a_0}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

 $x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$

i.e., $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$. (say $p_i = \frac{a_i}{a_0}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

 $x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$

i.e., $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$. (say $p_i = \frac{a_i}{a_0}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

 $x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$

i.e., $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$. (say $p_i = \frac{a_i}{a_0}$)

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

$$x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$$

i.e.,
$$x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$$
. (say $p_i = \frac{a_i}{a_0}$)

イロト 不得 トイラト イラト 一日

Given equation be

 $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0.$

Divide the equation by a_0 , then

$$x^{n} + \frac{a_{1}}{a_{0}}x^{n-1} + \frac{a_{2}}{a_{0}}x^{n-2} + \ldots + \frac{a_{n-1}}{a_{0}}x + \frac{a_{n}}{a_{0}} = 0.$$

i.e.,
$$x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0$$
. (say $p_i = \frac{a_i}{a_0}$)

イロト 不得 トイラト イラト 一日

Then, we have

 $S_1 = \sum \alpha_1 = -p_1$

 $S_2 = \sum \alpha_1 \, \alpha_2 = p_2$

 $S_3 = \sum \alpha_1 \, \alpha_2 \, \alpha_3 = -p_3$

 $S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$

イロト 不得 トイヨト イヨト 二日

Then, we have

 $S_1 = \sum \alpha_1 = -p_1$

 $S_2 = \sum \alpha_1 \, \alpha_2 = p_2$

 $S_3 = \sum \alpha_1 \, \alpha_2 \, \alpha_3 = -p_3$

 $S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Then, we have

 $S_1 = \sum \alpha_1 = -p_1$

 $S_2 = \sum \alpha_1 \, \alpha_2 = p_2$

 $S_3 = \sum \alpha_1 \, \alpha_2 \, \alpha_3 = -p_3$

 $S_n = \alpha_1 \alpha_2 \alpha_3 \dots \alpha_n = (-1)^n p_n$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Then, we have

 $S_1 = \sum \alpha_1 = -p_1$

 $S_2 = \sum \alpha_1 \alpha_2 = p_2$

 $S_3 = \sum \alpha_1 \, \alpha_2 \, \alpha_3 = -p_3$

 $S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Then, we have

$$S_1 = \sum \alpha_1 = -p_1$$

$$S_2 = \sum \alpha_1 \alpha_2 = p_2$$

$$S_3 = \sum \alpha_1 \alpha_2 \alpha_3 = -p_3$$

 $S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$

イロト 不得 トイラト イラト 一日

Then, we have

$$S_1 = \sum \alpha_1 = -p_1$$

$$S_2 = \sum \alpha_1 \alpha_2 = p_2$$

$$S_3 = \sum \alpha_1 \alpha_2 \alpha_3 = -p_3$$

÷

 $S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$

イロト 不得 トイラト イラト 一日

Then, we have

$$S_1 = \sum \alpha_1 = -p_1$$

$$S_2 = \sum \alpha_1 \alpha_2 = p_2$$

$$S_3 = \sum \alpha_1 \alpha_2 \alpha_3 = -p_3$$

÷

$$S_n = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n = (-1)^n p_n$$

(日) (四) (日) (日) (日)

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha\beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$. $x^2 + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$ We know that $\alpha + \beta = -p_1 = -p_1$

$$\alpha\beta = p_2 = \frac{5}{2}$$

3

イロト 不得 トイヨト イヨト

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $2x^{2} + 3x + 5 = 0$. $x^{2} + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_{1} = \frac{3}{2}$ and $p_{2} = \frac{5}{2}$ We know that $\alpha + \beta = -p_{1} = -p_{1}$

$$\alpha\beta = p_2 = \frac{5}{2}$$

3

イロト 不得 トイヨト イヨト

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha\beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$.

$$x^2 + \frac{3}{2}x + \frac{5}{2} = 0.$$

Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$

We know that $\alpha + \beta = -p_1 = -\frac{3}{2}$ and

$$\alpha\beta = p_2 = \frac{5}{2}$$

イロト 不得 トイヨト イヨト 二日

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$. $x^2 + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$. We know that $\alpha + \beta = -p_1$

$$\alpha\beta = p_2 = \frac{5}{2}$$

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$. $x^2 + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$

We know that $\alpha + \beta = -p_1 = -\frac{3}{2}$ and

$$\alpha\beta = p_2 = \frac{5}{2}$$

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$. $x^2 + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$ We know that $\alpha + \beta = -p_1 = -\frac{3}{2}$ and

 $\alpha\beta = p_2 = \frac{5}{2}$

3

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …
Problem 1.

If α and β are the roots of $2x^2 + 3x + 5 = 0$, then

find $\alpha + \beta, \alpha\beta$.

Solution.

Given $2x^2 + 3x + 5 = 0$. $x^2 + \frac{3}{2}x + \frac{5}{2} = 0$. Here $p_1 = \frac{3}{2}$ and $p_2 = \frac{5}{2}$ We know that $\alpha + \beta = -p_1 = -\frac{3}{2}$ and

$$\alpha\beta = p_2 = \frac{5}{2}$$

- (日本) - (1)

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha\beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha + \beta = -p_1 = -5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

イロト 不得 トイヨト イヨト 二日

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha + \beta = -p_1 = -5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

イロト 不得 トイヨト イヨト 二日

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha\beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha + \beta = -p_1 = -5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

イロト 不得下 イヨト イヨト 二日

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $lpha+eta\,=\,-p_1\,=\,-5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

イロト 不得下 イヨト イヨト 二日

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha + \beta = -p_1 = -5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha+\beta\,=\,-p_1\,=\,-5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

If α and β are the roots of $x^2 + 5x + 6 = 0$, then

find $\alpha + \beta, \alpha \beta$.

Solution.

Given $x^2 + 5x + 6 = 0$.

Here $p_1 = 5$ and $p_2 = 6$

We know that $\alpha+\beta\,=\,-p_1\,=\,-5$ and

$$\alpha\beta = p_2 = 6$$

$$(\alpha = -3 \text{ and } \beta = -2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -p_1$

Ve know that $\alpha + \rho + \gamma = -\rho_1 = -\rho/a$

$$\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$$

$$\alpha\beta\gamma = -p_3 = -d/a$$

イロト 不得 トイヨト イヨト 二日

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -p_1$

$$\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$$

$$\alpha\beta\gamma = -p_3 = -d/a$$

イロト 不得下 イヨト イヨト 二日

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = \alpha\beta + \beta\gamma + \gamma\alpha = p_2 = 0$

$$\alpha\beta\gamma = -p_3 = -d/a$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$

$$\alpha\beta\gamma = -p_3 = -d/a$$

イロト 不得下 イヨト イヨト 二日

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -b/a$

$$\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$$

$$lphaeta\gamma=-p_3=-d/a$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$

$$\alpha\beta\gamma = -p_3 = -d/a$$

If α , β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, then

find $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$, $\alpha\beta\gamma$.

Solution.

Given $ax^3 + bx^2 + cx + d = 0$. $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ We know that $\alpha + \beta + \gamma = -p_1 = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = p_2 = c/a$ $\alpha\beta\gamma = -p_3 = -d/a$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

1. In an equation with rational coefficients, imaginary roots

occur in pairs.

2. In an equation with rational coefficients, irrational roots

・ 何 ト ・ ヨ ト ・ ヨ ト

 In an equation with rational coefficients, imaginary roots occur in pairs.

 In an equation with rational coefficients, irrational roots occur in pairs.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 In an equation with rational coefficients, imaginary roots occur in pairs.

2. In an equation with rational coefficients, irrational roots

occur in pairs.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1. In an equation with rational coefficients, imaginary roots occur in pairs.

2. In an equation with rational coefficients, irrational roots occur in pairs.

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

 $-\sqrt{3} + \sqrt{5}, \quad \sqrt{3} - \sqrt{5}, \text{ and } -\sqrt{3} - \sqrt{5}$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text{ and } -\sqrt{3}-\sqrt{5}$$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3} + \sqrt{5}, \quad \sqrt{3} - \sqrt{5}, \text{ and } -\sqrt{3} - \sqrt{5}$$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

 $-\sqrt{3} + \sqrt{5}, \quad \sqrt{3} - \sqrt{5}, \text{ and } -\sqrt{3} - \sqrt{5}$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

 $-\sqrt{3} + \sqrt{5}, \quad \sqrt{3} - \sqrt{5}, \text{ and } -\sqrt{3} - \sqrt{5}$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text{ and } -\sqrt{3}-\sqrt{5}$$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text{ and } -\sqrt{3}-\sqrt{5}$$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text{ and } -\sqrt{3}-\sqrt{5}$$

Therefore, the required equation is

 $[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$

Solution.

Given $\sqrt{3} + \sqrt{5}$ is one of whose root of the required equation.

The other root of the same equation are

$$-\sqrt{3}+\sqrt{5}, \quad \sqrt{3}-\sqrt{5}, \text{ and } -\sqrt{3}-\sqrt{5}$$

Therefore, the required equation is

$$[x - (\sqrt{3} + \sqrt{5})][x - (\sqrt{3} - \sqrt{5})][x - (-\sqrt{3} + \sqrt{5})][x - (-\sqrt{3} - \sqrt{5})] = 0$$

イロン イヨン イヨン

$$[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$$

$$[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$$

$$((a + b)(a - b) = a^2 - b^2)$$

$$(x^2 - 2x\sqrt{3} + 3 - 5) (x^2 + 2x\sqrt{3} + 3 - 5) = 0$$

$$(x^2 - 2x\sqrt{3} - 2) (x^2 + 2x\sqrt{3} - 2) = 0$$

$$[(x^2 - 2) - 2x\sqrt{3}] [(x^2 - 2) + 2x\sqrt{3}] = 0$$

$$[(x^2 - 2)^2 - (2x\sqrt{3})^2] = 0$$

$$x^4 - 4x^2 + 4 - 12x^2 = 0$$

$$\therefore x^4 - 16x^2 + 4 = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$ $[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$ $((a+b)(a-b) = a^2 - b^2)$

 $[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$ $[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$ $((a+b)(a-b) = a^2 - b^2)$ $(x^2 - 2x\sqrt{3} + 3 - 5)(x^2 + 2x\sqrt{3} + 3 - 5) = 0$

 $[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$ $[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$ $((a+b)(a-b) = a^2 - b^2)$ $(x^2 - 2x\sqrt{3} + 3 - 5)(x^2 + 2x\sqrt{3} + 3 - 5) = 0$ $(x^2 - 2x\sqrt{3} - 2)(x^2 + 2x\sqrt{3} - 2) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

 $[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$ $[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$ $((a+b)(a-b) = a^2 - b^2)$ $(x^2 - 2x\sqrt{3} + 3 - 5)(x^2 + 2x\sqrt{3} + 3 - 5) = 0$ $(x^2 - 2x\sqrt{3} - 2)(x^2 + 2x\sqrt{3} - 2) = 0$ $[(x^2-2)-2x\sqrt{3}] [(x^2-2)+2x\sqrt{3}] = 0$

 $[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$ $[(x - \sqrt{3})^2 - (\sqrt{5})^2] [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$ $((a+b)(a-b) = a^2 - b^2)$ $(x^2 - 2x\sqrt{3} + 3 - 5) (x^2 + 2x\sqrt{3} + 3 - 5) = 0$ $(x^2 - 2x\sqrt{3} - 2)(x^2 + 2x\sqrt{3} - 2) = 0$ $[(x^2-2)-2x\sqrt{3}] [(x^2-2)+2x\sqrt{3}] = 0$ $[(x^2-2)^2-(2x\sqrt{3})^2] = 0$

$$[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$$

$$[(x - \sqrt{3})^2 - (\sqrt{5})^2] \quad [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$$

$$((a + b)(a - b) = a^2 - b^2)$$

$$(x^2 - 2x\sqrt{3} + 3 - 5) \quad (x^2 + 2x\sqrt{3} + 3 - 5) = 0$$

$$(x^2 - 2x\sqrt{3} - 2) \quad (x^2 + 2x\sqrt{3} - 2) = 0$$

$$[(x^2 - 2) - 2x\sqrt{3}] \quad [(x^2 - 2) + 2x\sqrt{3}] = 0$$

$$[(x^2 - 2)^2 - (2x\sqrt{3})^2] = 0$$

$$x^4 - 4x^2 + 4 - 12x^2 = 0$$

 $\therefore x^4 - 16x^2 + 4 = 0$

$$[(x - \sqrt{3}) + \sqrt{5}][(x - \sqrt{3}) - \sqrt{5}][(x + \sqrt{3}) + \sqrt{5}][(x + \sqrt{3}) - \sqrt{5}] = 0$$

$$[(x - \sqrt{3})^2 - (\sqrt{5})^2] \quad [(x + \sqrt{3})^2 - (\sqrt{5})^2] = 0$$

$$((a + b)(a - b) = a^2 - b^2)$$

$$(x^2 - 2x\sqrt{3} + 3 - 5) (x^2 + 2x\sqrt{3} + 3 - 5) = 0$$

$$(x^2 - 2x\sqrt{3} - 2) (x^2 + 2x\sqrt{3} - 2) = 0$$

$$[(x^2 - 2) - 2x\sqrt{3}] \quad [(x^2 - 2) + 2x\sqrt{3}] = 0$$

$$[(x^2 - 2)^2 - (2x\sqrt{3})^2] = 0$$

$$x^4 - 4x^2 + 4 - 12x^2 = 0$$

$$\therefore x^4 - 16x^2 + 4 = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

3

イロト 不得 トイヨト イヨト

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

3

イロト 不得 トイヨト イヨト

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Solution.

Since -1 + 2i is a root, -1 - 2i will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - 2i) (x + 1 + 2i) = 0$$
$$(x + 1)^{2} - (2i)^{2} = 0$$
$$x^{2} + 2x + 1 + 4 = 0$$
$$x^{2} + 2x + 5 = 0$$

Now divide
$$x^4 - 12x - 5 = 0$$
 by $x^2 + 2x + 5 = 0$

Dr S Srinivasan (PAC

14 / 22

・ロト・西ト・モン・ビー シック

Now divide
$$x^4 - 12x - 5 = 0$$
 by $x^2 + 2x + 5 = 0$

$$\begin{array}{r} x^2 - 2x - 1 \\ x^2 + 2x + 5 \end{array} \underbrace{\begin{array}{r} x^4 & -12x - 5 \\ -x^4 - 2x^3 - 5x^2 \\ -2x^3 - 5x^2 - 12x \\ 2x^3 + 4x^2 + 10x \\ \hline -x^2 & -2x - 5 \\ x^2 & +2x + 5 \\ \hline 0 \end{array}}$$

・ロト・西ト・モン・ビー シック

 $x^2 - 2x - 1 = 0 \qquad (ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

- 20

イロン イヨン イヨン

$$x^2 - 2x - 1 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

æ

イロン イ理 とくほとう ほんし

$$x^2 - 2x - 1 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

æ

$$x^2 - 2x - 1 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

æ

$$x^2 - 2x - 1 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

æ

$$x^2 - 2x - 1 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{2 \pm 2\sqrt{2}}{2}$$
$$x = 1 \pm \sqrt{2}$$

 \therefore The roots are $-1 \pm 2i$, $1 \pm \sqrt{2}$.

æ

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3})(x-2+i\sqrt{3}) = 0$$

$$(x-2)^2 - (i\sqrt{3})^2 = 0$$

 $x^2 - 4x + 4 + 3 = 0$

 $x^2 - 4x + 7 = 0$

(日)

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3})(x-2+i\sqrt{3}) = 0$$

$$(x-2)^2 - (i\sqrt{3})^2 = 0$$

$$x^2 - 4x + 4 + 3 = 0$$

$$x^2 - 4x + 7 = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$2 + i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3})(x-2+i\sqrt{3}) = 0$$

$$(x-2)^2 - (i\sqrt{3})^2 = 0$$

 $x^2 - 4x + 4 + 3 = 0$

$$x^2 - 4x + 7 = 0$$

(日)

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3})(x-2+i\sqrt{3}) = 0$$

$$(x-2)^2 - (i\sqrt{3})^2 = 0$$

 $x^2 - 4x + 4 + 3 = 0$

 $x^2 - 4x + 7 = 0$

3

イロト 不得 トイヨト イヨト

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x - 2 - i\sqrt{3}) (x - 2 + i\sqrt{3}) = 0$$
$$(x - 2)^2 - (i\sqrt{3})^2 = 0$$

$$x^2 - 4x + 4 + 3 = 0$$

$$x^2 - 4x + 7 = 0$$

イロト イヨト イヨト ・

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3})(x-2+i\sqrt{3})=0$$

$$(x-2)^2 - (i\sqrt{3})^2 = 0$$

$$x^2 - 4x + 4 + 3 = 0$$

$$x^2 - 4x + 7 = 0$$

イロト イヨト イヨト ・

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x - 2 - i\sqrt{3}) (x - 2 + i\sqrt{3}) = 0$$

 $(x - 2)^2 - (i\sqrt{3})^2 = 0$
 $x^2 - 4x + 4 + 3 = 0$

 $x^2 - 4x + 7 = 0$

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x-2-i\sqrt{3}) (x-2+i\sqrt{3}) = 0$$

 $(x-2)^2 - (i\sqrt{3})^2 = 0$
 $x^2 - 4x + 4 + 3 = 0$

・ロト ・ 同ト ・ ヨト ・ ヨト

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x - 2 - i\sqrt{3}) (x - 2 + i\sqrt{3}) = 0$$
$$(x - 2)^{2} - (i\sqrt{3})^{2} = 0$$
$$x^{2} - 4x + 4 + 3 = 0$$
$$x^{2} - 4x + 7 = 0$$

- 本間 ト イヨ ト イヨ ト 三 ヨ

$$2+i\sqrt{3}$$
 is a root.

Solution.

Since $2 + i\sqrt{3}$ is a root, $2 - i\sqrt{3}$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x - 2 - i\sqrt{3}) (x - 2 + i\sqrt{3}) = 0$$
$$(x - 2)^{2} - (i\sqrt{3})^{2} = 0$$
$$x^{2} - 4x + 4 + 3 = 0$$
$$x^{2} - 4x + 7 = 0$$

- 本間 ト イヨ ト イヨ ト 三 ヨ

Now divide
$$x^4 - 4x^2 + 8x + 35 = 0$$
 by $x^2 - 4x + 7 = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Now divide
$$x^4 - 4x^2 + 8x + 35 = 0$$
 by $x^2 - 4x + 7 = 0$

$$\begin{array}{r} x^{2} + 4x + 5 \\
 x^{2} - 4x + 7) \hline x^{4} - 4x^{2} + 8x + 35 \\
 -x^{4} + 4x^{3} - 7x^{2} \\
 4x^{3} - 11x^{2} + 8x \\
 -4x^{3} + 16x^{2} - 28x \\
 5x^{2} - 20x + 35 \\
 -5x^{2} + 20x - 35 \\
 0
 \end{array}$$

・ロト・西ト・モン・ビー シック

 $x^2 + 4x + 5 = 0 \qquad (ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{-4 \pm 2i}{2}$$
$$x = -2 \pm i$$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

э

$$x^2 + 4x + 5 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{-4 \pm 2i}{2}$$
$$x = -2 \pm i$$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

3

$$x^2 + 4x + 5 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

 $x = \frac{-4 \pm 2i}{2}$ $x = -2 \pm i$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

$$x^2 + 4x + 5 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{-4 \pm 2i}{2}$$
$$x = -2 \pm i$$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

3

$$x^2 + 4x + 5 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{-4 \pm 2i}{2}$$
$$x = -2 \pm i$$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

3

$$x^2 + 4x + 5 = 0$$
 $(ax^2 + bx + c = 0)$

$$x = \frac{-4 \pm \sqrt{16 - 20}}{2} \qquad \left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

$$x = \frac{-4 \pm 2i}{2}$$
$$x = -2 \pm i$$

 \therefore The roots are $2 \pm i\sqrt{3}$, $-2 \pm i$.

æ

イロン 不聞 とくほとう ほとう

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5} - 1$ is a root, $-\sqrt{5} - 1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

3

イロト 不得 トイヨト イヨト
$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5} - 1$ is a root, $-\sqrt{5} - 1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

イロト 不得 トイヨト イヨト 二日

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5} - 1$ is a root, $-\sqrt{5} - 1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

 $(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x+1-\sqrt{5})(x+1+\sqrt{5}) = 0$$

 $(x+1)^2 - (\sqrt{5})^2 = 0$

 $x^2 + 2x + 1 - 5 = 0$

 $x^2 + 2x - 4 = 0$

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - \sqrt{5}) (x + 1 + \sqrt{5}) = 0$$
$$(x + 1)^{2} - (\sqrt{5})^{2} = 0$$
$$x^{2} + 2x + 1 - 5 = 0$$

<ロト < 四ト < 三ト < 三ト = 三

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - \sqrt{5}) (x + 1 + \sqrt{5}) = 0$$

 $(x + 1)^2 - (\sqrt{5})^2 = 0$
 $x^2 + 2x + 1 - 5 = 0$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - \sqrt{5}) (x + 1 + \sqrt{5}) = 0$$
$$(x + 1)^2 - (\sqrt{5})^2 = 0$$
$$x^2 + 2x + 1 - 5 = 0$$
$$x^2 + 2x - 4 = 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

$$\sqrt{5}-1$$
 is a root.

Solution.

Since $\sqrt{5}-1$ is a root, $-\sqrt{5}-1$ will also be a root of the equation.

The factor corresponding to the two roots is

$$(x + 1 - \sqrt{5}) (x + 1 + \sqrt{5}) = 0$$
$$(x + 1)^2 - (\sqrt{5})^2 = 0$$
$$x^2 + 2x + 1 - 5 = 0$$
$$x^2 + 2x - 4 = 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Now divide
$$x^4 - 11x^2 + 2x + 12 = 0$$
 by $x^2 + 2x - 4 = 0$

$$\begin{array}{r} x^{2} - 2x - 3 \\ x^{2} + 2x - 4 \end{array} \xrightarrow{x^{4} - 11x^{2} + 2x + 12} \\ - x^{4} - 2x^{3} + 4x^{2} \\ \hline - 2x^{3} - 7x^{2} + 2x \\ 2x^{3} + 4x^{2} - 8x \\ \hline - 3x^{2} - 6x + 12 \\ 3x^{2} + 6x - 12 \\ \hline 0 \end{array}$$

・ロト・西ト・モン・ビー シック

Now divide
$$x^4 - 11x^2 + 2x + 12 = 0$$
 by $x^2 + 2x - 4 = 0$

$$\begin{array}{r} x^2 - 2x - 3 \\ x^2 + 2x - 4 \end{array} \underbrace{\begin{array}{r} x^4 & -11x^2 + 2x + 12 \\ -x^4 - 2x^3 & +4x^2 \\ \hline -2x^3 & -7x^2 + 2x \\ 2x^3 & +4x^2 - 8x \\ \hline -3x^2 - 6x + 12 \\ 3x^2 + 6x - 12 \\ \hline 0 \end{array}}$$

・ロト・西ト・モン・ビー シック

$$x^{2} - 2x - 3 = 0 \qquad (x^{2} - (\alpha + \beta)x + \alpha\beta = 0)$$
$$(x - 3)(x + 1) = 0 \qquad (\alpha\beta = c; \ \alpha + \beta = -b)$$
$$x = -1, 3 \qquad (\alpha = -1; \ \beta = 3)$$

 \therefore The roots are $\pm\sqrt{5}-1$, -1, 3.

3

イロン イ理 とく ヨン イ ヨン

$$x^{2}-2x-3 = 0$$
 $(x^{2}-(\alpha + \beta)x + \alpha\beta = 0)$

$$(x-3)(x+1) = 0 \qquad (\alpha\beta = c; \ \alpha+\beta = -b)$$

$$x = -1, 3$$
 ($\alpha = -1; \beta = 3$)

 \therefore The roots are $\pm\sqrt{5}-1$, -1, 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$x^{2}-2x-3 = 0$$
 $(x^{2}-(\alpha + \beta)x + \alpha\beta = 0)$

$$(x-3)(x+1) = 0 \qquad (\alpha\beta = c; \alpha+\beta = -b)$$

$$x = -1, 3$$
 ($\alpha = -1; \beta = 3$)

 \therefore The roots are $\pm\sqrt{5}-1$, -1, 3.

3

イロト イヨト イヨト イヨト

$$x^{2} - 2x - 3 = 0$$
 $(x^{2} - (\alpha + \beta)x + \alpha\beta = 0)$

$$(x-3)(x+1) = 0 \qquad (\alpha\beta = c; \ \alpha+\beta = -b)$$

$$x = -1, 3$$
 ($\alpha = -1; \beta = 3$)

 \therefore The roots are $\pm\sqrt{5}-1$, -1, 3.

3

イロト イヨト イヨト イヨト

$$x^{2}-2x-3 = 0$$
 $(x^{2}-(\alpha + \beta)x + \alpha\beta = 0)$

$$(x-3)(x+1) = 0$$
 $(\alpha\beta = c; \alpha+\beta = -b)$

$$x = -1, 3$$
 ($\alpha = -1; \beta = 3$)

: The roots are $\pm\sqrt{5}-1$, -1, 3.

æ

イロト イポト イヨト イヨト

Problems.

5. Solve the equation $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$ given that

$$1-\sqrt{5}$$
 is a root.

6. Solve the equation $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$ given that

 $1+\sqrt{-1}$ is a root.

7. Solve the equation $x^4 + 2x^2 - 16x + 77 = 0$ given that

 $-2 + \sqrt{-7}$ is a root.

8. Solve the equation $3x^5 - 4x^4 - 42x^3 + 52x^2 + 27x - 36 = 0$

given that $\sqrt{2} + \sqrt{5}$ is a root.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの