Allied Mathematics - I Unit-II Theory of Equation

Dr S. Srinivasan

Assistant Professor, Department of Mathematics , Periyar Arts College,

Cuddalore,
Tamil nadu.
Email: smrail@gmail.com
Cell: 7010939424

Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

2.4 Reciprocal equations

Definition.

2.4 Reciprocal equations

Definition.

A polynomial $P(x)$ of degree n is said to be a reciprocal polynomial if

2.4 Reciprocal equations

Definition.

A polynomial $P(x)$ of degree n is said to be a reciprocal polynomial if one of the following conditions is true:

2.4 Reciprocal equations

Definition.

A polynomial $P(x)$ of degree n is said to be a reciprocal polynomial if one of the following conditions is true:

1. $P(x)=x^{n} P\left(\frac{1}{x}\right)$

2.4 Reciprocal equations

Definition.

A polynomial $P(x)$ of degree n is said to be a reciprocal polynomial if
one of the following conditions is true:

1. $P(x)=x^{n} P\left(\frac{1}{x}\right)$
2. $P(x)=-x^{n} P\left(\frac{1}{x}\right)$

Type I and II

1. If $P(x)=x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called

Type I and II

1. If $P(x)=x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called a reciprocal equation of Type \mathbf{I}.

Type I and II

1. If $P(x)=x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called a reciprocal equation of Type \mathbf{I}.
2. If $P(x)=-x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called

Type I and II

1. If $P(x)=x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called a reciprocal equation of Type \mathbf{I}.
2. If $P(x)=-x^{n} P\left(\frac{1}{x}\right)$ then the polynomial $P(x)$ of degree n is called a reciprocal equation of Type II.

Theorem

Theorem 1.

A polynomial equation
$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots .+a_{2} x^{2}+a_{1} x+a_{0}=0,\left(a_{n} \neq 0\right)$
is a reciprocal equation if, and only if, one of the following statement
is true:

Theorem

Theorem 1.

A polynomial equation
$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots .+a_{2} x^{2}+a_{1} x+a_{0}=0,\left(a_{n} \neq 0\right)$
is a reciprocal equation if, and only if, one of the following statement
is true:
(i) $a_{n}=a_{0}, a_{n-1}=a_{1}, a_{n-2}=a_{2} \ldots$

Theorem

Theorem 1.

A polynomial equation
$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots .+a_{2} x^{2}+a_{1} x+a_{0}=0,\left(a_{n} \neq 0\right)$
is a reciprocal equation if, and only if, one of the following statement
is true:
(i) $a_{n}=a_{0}, a_{n-1}=a_{1}, a_{n-2}=a_{2} \ldots$
(ii) $a_{n}=-a_{0}, a_{n-1}=-a_{1}, a_{n-2}=-a_{2} \ldots$

Note

1. In Type I the coefficients from the beginning are equal to the

Note

1. In Type I the coefficients from the beginning are equal to the coefficients from the end.

Note

1. In Type I the coefficients from the beginning are equal to the coefficients from the end.

For example, $6 x^{5}+x^{4}-43 x^{3}-43 x^{2}+x+6=0$ is of Type I.

Note

1. In Type I the coefficients from the beginning are equal to the coefficients from the end.

For example, $6 x^{5}+x^{4}-43 x^{3}-43 x^{2}+x+6=0$ is of Type I.
2. In Type II the coefficients from the beginning are equal in magnitude to

Note

1. In Type I the coefficients from the beginning are equal to the coefficients from the end.

For example, $6 x^{5}+x^{4}-43 x^{3}-43 x^{2}+x+6=0$ is of Type I.
2. In Type II the coefficients from the beginning are equal in magnitude to
the coefficients from the end, but opposite in sign.

Note

1. In Type I the coefficients from the beginning are equal to the coefficients from the end.

For example, $6 x^{5}+x^{4}-43 x^{3}-43 x^{2}+x+6=0$ is of Type I.
2. In Type II the coefficients from the beginning are equal in magnitude to
the coefficients from the end, but opposite in sign.
For example $6 x^{5}-41 x^{4}+97 x^{3}-97 x^{2}+41 x-6=0$ is of Type II.

Remark

(i) A reciprocal equation cannot have 0 as a solution.

Remark

(i) A reciprocal equation cannot have 0 as a solution.
(ii) The coefficients and the solutions are not restricted to be real.

Remark

(i) A reciprocal equation cannot have 0 as a solution.
(ii) The coefficients and the solutions are not restricted to be real.
(iii) The statement if $\mathrm{P}(\mathrm{x})=0$ is a polynomial equation such that
whenever α is a root, $1 / \alpha$ is also a root, then the polynomial equation
$P(x)=0$ must be a reciprocal equation is not true.

Remark

(i) A reciprocal equation cannot have 0 as a solution.
(ii) The coefficients and the solutions are not restricted to be real.
(iii) The statement if $\mathrm{P}(\mathrm{x})=0$ is a polynomial equation such that
whenever α is a root, $1 / \alpha$ is also a root, then the polynomial equation
$P(x)=0$ must be a reciprocal equation is not true.
For example, $2 x^{3}-9 x^{2}+12 x-4=0$ is a polynomial equation whose roots are $2,2,1 / 2$.

Classification

Reciprocal equations are classified as Type I and Type II

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.

We state some results without proof:

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.
We state some results without proof:

1. For an odd degree reciprocal equation of Type I,

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.
We state some results without proof:

1. For an odd degree reciprocal equation of Type I,
$x=-1$ must be a solution.

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.
We state some results without proof:

1. For an odd degree reciprocal equation of Type I,
$x=-1$ must be a solution.
2. For an odd degree reciprocal equation of Type II,

Classification

Reciprocal equations are classified as Type I and Type II
according to $a_{n-r}=a_{r}$ or $a_{n-r}=-a_{r}, r=0,1,2, \ldots n$.
We state some results without proof:

1. For an odd degree reciprocal equation of Type I,
$x=-1$ must be a solution.
2. For an odd degree reciprocal equation of Type II, $x=1$ must be a solution.

Classification

3. For an even degree reciprocal equation of Type II, the middle term

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.
4. For an even degree reciprocal equation, by taking $x+(1 / x)$ or $x-(1 / x)$

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.
4. For an even degree reciprocal equation, by taking $x+(1 / x)$ or $x-(1 / x)$
as y, we can obtain a polynomial equation of degree one half of the

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.
4. For an even degree reciprocal equation, by taking $x+(1 / x)$ or $x-(1 / x)$
as y, we can obtain a polynomial equation of degree one half of the degree of the given equation.

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.
4. For an even degree reciprocal equation, by taking $x+(1 / x)$ or $x-(1 / x)$
as y, we can obtain a polynomial equation of degree one half of the degree of the given equation.
solving this polynomial equation, we can get the roots of the given

Classification

3. For an even degree reciprocal equation of Type II, the middle term must be 0 , further $x=1$ and $x=-1$ are solutions.
4. For an even degree reciprocal equation, by taking $x+(1 / x)$ or $x-(1 / x)$
as y, we can obtain a polynomial equation of degree one half of the degree of the given equation.
solving this polynomial equation, we can get the roots of the given polynomial equation. (Standard Type)

Table

Types	Degree of $f(x)$	Sign of a_{0} and a_{n}	Factor of $f(x)$
Type I	Even	Same	Solve
	Odd	Same	$x=-1$
Type II	Even	Opposite	$x=-1,1$
	Odd	Opposite	$x=1$

Problem 1.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.
Solution.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Solution.

Given $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Solution.

Given $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

This equation is Type I even reciprocal equation.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Solution.

Given $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Solution.

Given $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as
$x^{2}\left(4 x^{2}-20 x+33-\frac{20}{x}+\frac{4}{x^{2}}\right)=0$.

Problem 1.

Solve the following equation $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

Solution.

Given $4 x^{4}-20 x^{3}+33 x^{2}-20 x+4=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as

$$
\begin{aligned}
& x^{2}\left(4 x^{2}-20 x+33-\frac{20}{x}+\frac{4}{x^{2}}\right)=0 \\
& 4 x^{2}-20 x+33-\frac{20}{x}+\frac{4}{x^{2}}=0
\end{aligned}
$$

$$
(\text { since } x \neq 0)
$$

$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$4\left(y^{2}-2\right)-20 y+33=0$
$\therefore 4\left(x^{2}+\frac{1}{x^{2}}\right)-20\left(x+\frac{1}{x}\right)+33=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$4\left(y^{2}-2\right)-20 y+33=0$
$4 y^{2}-8-20 y+33=0$

$$
4 y^{2}-20 y+25=0
$$

$$
\begin{aligned}
& 4 y^{2}-20 y+25=0 \\
& 4 y^{2}-10 y-10 y+25=0
\end{aligned}
$$

$$
\begin{aligned}
& 4 y^{2}-20 y+25=0 \\
& 4 y^{2}-10 y-10 y+25=0 \\
& 2 y(y-5)-5(2 y-5)=0
\end{aligned}
$$

$$
4 y^{2}-20 y+25=0
$$

$$
4 y^{2}-10 y-10 y+25=0
$$

$$
2 y(y-5)-5(2 y-5)=0
$$

$$
(2 y-5)(2 y-5)=0
$$

$$
4 y^{2}-20 y+25=0
$$

$$
4 y^{2}-10 y-10 y+25=0
$$

$$
2 y(y-5)-5(2 y-5)=0
$$

$$
(2 y-5)(2 y-5)=0
$$

$$
(2 y-5)=0
$$

$$
4 y^{2}-20 y+25=0
$$

$$
4 y^{2}-10 y-10 y+25=0
$$

$$
2 y(y-5)-5(2 y-5)=0
$$

$$
(2 y-5)(2 y-5)=0
$$

$$
(2 y-5)=0
$$

$$
y=5 / 2
$$

$$
4 y^{2}-20 y+25=0
$$

$$
4 y^{2}-10 y-10 y+25=0
$$

$$
2 y(y-5)-5(2 y-5)=0
$$

$$
(2 y-5)(2 y-5)=0
$$

$$
(2 y-5)=0
$$

$$
y=5 / 2
$$

$$
y=5 / 2 \Rightarrow x+(1 / x)=5 / 2 \Rightarrow \frac{x^{2}+1}{x}=\frac{5}{2}
$$

$$
\begin{aligned}
& 4 y^{2}-20 y+25=0 \\
& 4 y^{2}-10 y-10 y+25=0 \\
& 2 y(y-5)-5(2 y-5)=0 \\
& (2 y-5)(2 y-5)=0 \\
& (2 y-5)=0 \\
& y=5 / 2 \\
& y=5 / 2 \Rightarrow x+(1 / x)=5 / 2 \Rightarrow \frac{x^{2}+1}{x}=\frac{5}{2} \\
& \Rightarrow x^{2}+1=\frac{5 x}{2} \Rightarrow 2 x^{2}+2=5 x
\end{aligned}
$$

$$
4 y^{2}-20 y+25=0
$$

$$
4 y^{2}-10 y-10 y+25=0
$$

$$
2 y(y-5)-5(2 y-5)=0
$$

$$
(2 y-5)(2 y-5)=0
$$

$$
(2 y-5)=0
$$

$$
y=5 / 2
$$

$$
y=5 / 2 \Rightarrow x+(1 / x)=5 / 2 \Rightarrow \frac{x^{2}+1}{x}=\frac{5}{2}
$$

$$
\Rightarrow x^{2}+1=\frac{5 x}{2} \Rightarrow 2 x^{2}+2=5 x
$$

$$
\Rightarrow 2 x^{2}-5 x+2=0 \quad\left(a x^{2}+b x+c=0\right)
$$

$\Rightarrow 2 x^{2}-5 x+2=0 \quad\left(a x^{2}+b x+c=0\right)$

$$
\begin{array}{ll}
\Rightarrow 2 x^{2}-5 x+2=0 & \left(a x^{2}+b x+c=0\right) \\
\Rightarrow x=\frac{5 \pm \sqrt{25-16}}{4} & \left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
\end{array}
$$

$\Rightarrow 2 x^{2}-5 x+2=0$
$\Rightarrow x=\frac{5 \pm \sqrt{25-16}}{4}$
$\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$
$\Rightarrow x=\frac{5 \pm 3}{4}$
$\Rightarrow 2 x^{2}-5 x+2=0$
$\left(a x^{2}+b x+c=0\right)$
$\Rightarrow x=\frac{5 \pm \sqrt{25-16}}{4}$
$\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$

$$
\Rightarrow x=\frac{5 \pm 3}{4}
$$

$$
\Rightarrow x=2, \quad \frac{1}{2}
$$

$$
\begin{aligned}
& \Rightarrow 2 x^{2}-5 x+2=0 \quad\left(a x^{2}+b x+c=0\right) \\
& \Rightarrow x=\frac{5 \pm \sqrt{25-16}}{4} \quad\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right) \\
& \Rightarrow x=\frac{5 \pm 3}{4} \\
& \Rightarrow x=2, \quad \frac{1}{2}
\end{aligned}
$$

Hence, the roots are $x=2, \quad \frac{1}{2}, \quad 2, \quad \frac{1}{2}$.

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$. Solution.

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
Solution.

Given $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

Solution.

Given $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

This equation is Type I even reciprocal equation.

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

Solution.

Given $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

Solution.

Given $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as
$x^{2}\left(x^{2}-10 x+26-\frac{10}{x}+\frac{1}{x^{2}}\right)=0$.

Problem 2.

Solve the following equation $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
Solution.
Given $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.

This equation is Type I even reciprocal equation.

Hence it can be rewritten as

$$
\begin{aligned}
& x^{2}\left(x^{2}-10 x+26-\frac{10}{x}+\frac{1}{x^{2}}\right)=0 \\
& \left(x^{2}-10 x+26-\frac{10}{x}+\frac{1}{x^{2}}\right)=0
\end{aligned}
$$

$$
(\text { since } x \neq 0)
$$

$$
\begin{equation*}
\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0 \tag{1}
\end{equation*}
$$

$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$\left(y^{2}-2\right)-10 y+26=0$
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0$.
Let $y=x+\frac{1}{x}$. Then, we get
$\Rightarrow y^{2}=\left(x+\frac{1}{x}\right)^{2}$
$\Rightarrow y^{2}=x^{2}+\left(\frac{1}{x}\right)^{2}+2$
$\Rightarrow x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$
Substitute in (1), we get
$\left(y^{2}-2\right)-10 y+26=0$
$y^{2}-2-10 y+26=0$

$$
y^{2}-10 y+24=0
$$

$$
\begin{aligned}
& y^{2}-10 y+24=0 \\
& (y-4)(y-6)=0
\end{aligned}
$$

$$
y^{2}-10 y+24=0
$$

$$
(y-4)(y-6)=0
$$

Case (i):

$$
\begin{aligned}
& y^{2}-10 y+24=0 \\
& (y-4)(y-6)=0
\end{aligned}
$$

Case (i):

$$
y=6 \Rightarrow x+(1 / x)=6
$$

$$
\begin{aligned}
& y^{2}-10 y+24=0 \\
& (y-4)(y-6)=0 \\
& \text { Case }(\mathbf{i}): \\
& y=6 \Rightarrow x+(1 / x)=6 \\
& \Rightarrow x^{2}+1=6 x
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}-10 y+24=0 \\
& (y-4)(y-6)=0 \\
& \text { Case (i): } \\
& y=6 \Rightarrow x+(1 / x)=6 \\
& \Rightarrow x^{2}+1=6 x \\
& \Rightarrow x^{2}-6 x+1=0
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}-10 y+24=0 \\
& (y-4)(y-6)=0
\end{aligned}
$$

Case (i):

$$
y=6 \Rightarrow x+(1 / x)=6
$$

$$
\Rightarrow x^{2}+1=6 x
$$

$$
\Rightarrow x^{2}-6 x+1=0
$$

$$
\Rightarrow x^{2}-6 x+1=0
$$

$$
\left(a x^{2}+b x+c=0\right)
$$

$$
y^{2}-10 y+24=0
$$

$$
(y-4)(y-6)=0
$$

Case (i):

$$
y=6 \Rightarrow x+(1 / x)=6
$$

$$
\Rightarrow x^{2}+1=6 x
$$

$$
\Rightarrow x^{2}-6 x+1=0
$$

$$
\Rightarrow x^{2}-6 x+1=0
$$

$$
\left(a x^{2}+b x+c=0\right)
$$

$$
\Rightarrow x=\frac{6 \pm \sqrt{36-4}}{2}
$$

$$
\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
$$

$$
x=\frac{6 \pm \sqrt{32}}{2}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2} \\
& \text { Case (ii): }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2}
\end{aligned}
$$

Case (ii):

$$
y=4 \Rightarrow x+(1 / x)=4
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2}
\end{aligned}
$$

Case (ii):

$$
\begin{aligned}
& y=4 \Rightarrow x+(1 / x)=4 \\
& \Rightarrow x^{2}+1=4 x
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{32}}{2} \\
& x=\frac{6 \pm \sqrt{16 \times 2}}{2} \\
& x=\frac{6 \pm 4 \sqrt{2}}{2} \\
& x=3 \pm 2 \sqrt{2}
\end{aligned}
$$

Case (ii):

$$
y=4 \Rightarrow x+(1 / x)=4
$$

$$
\Rightarrow x^{2}+1=4 x
$$

$$
\Rightarrow x^{2}-4 x+1=0
$$

$$
x=\frac{4 \pm \sqrt{16-4}}{2}
$$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2} \\
& x=\frac{4 \pm \sqrt{4 \times 3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2} \\
& x=\frac{4 \pm \sqrt{4 \times 3}}{2} \\
& x=\frac{4 \pm 2 \sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2} \\
& x=\frac{4 \pm \sqrt{4 \times 3}}{2} \\
& x=\frac{4 \pm 2 \sqrt{3}}{2} \\
& x=2 \pm \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4}}{2} \\
& x=\frac{4 \pm \sqrt{12}}{2} \\
& x=\frac{4 \pm \sqrt{4 \times 3}}{2} \\
& x=\frac{4 \pm 2 \sqrt{3}}{2} \\
& x=2 \pm \sqrt{3}
\end{aligned}
$$

Hence, the roots are $x=3+2 \sqrt{2}, 3-2 \sqrt{2}, 2+\sqrt{3}, 2-\sqrt{3}$

Problem 3.

Solve the following equation $7 x^{3}-43 x^{2}-43 x+7=0$.

Solution.

Problem 3.

Solve the following equation $7 x^{3}-43 x^{2}-43 x+7=0$.
Solution.

Given $7 x^{3}-43 x^{2}-43 x+7=0$.

Problem 3.

Solve the following equation $7 x^{3}-43 x^{2}-43 x+7=0$.

Solution.

Given $7 x^{3}-43 x^{2}-43 x+7=0$.

This equation is Type II odd degree Case 1 reciprocal equation.

Problem 3.

Solve the following equation $7 x^{3}-43 x^{2}-43 x+7=0$.

Solution.

Given $7 x^{3}-43 x^{2}-43 x+7=0$.

This equation is Type II odd degree Case 1 reciprocal equation.

Thus -1 is a solution and hence $x+1$ is a factor.

Problem 3.

Solve the following equation $7 x^{3}-43 x^{2}-43 x+7=0$.

Solution.

Given $7 x^{3}-43 x^{2}-43 x+7=0$.

This equation is Type II odd degree Case 1 reciprocal equation.

Thus -1 is a solution and hence $x+1$ is a factor.

Dividing the polynomial $7 x^{3}-43 x^{2}-43 x+7$ by the factor $x+1$, we get

$$
-1 \begin{array}{rrrr}
7 & -43 & -43 & 7 \\
& -7 & 50 & -7 \\
\hline 7 & -50 & 7 & 0
\end{array}
$$

$$
\begin{aligned}
& -1 \begin{array}{rrrr}
7 & -43 & -43 & 7 \\
-7 & 50 & -7 \\
7 & -50 & 7 & 0
\end{array} \\
& \Rightarrow 7 x^{2}-50 x+7=0 \\
& \left(a x^{2}+b x+c=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& -1 \begin{array}{rrrr}
7 & -43 & -43 & 7 \\
-7 & 50 & -7
\end{array} \\
& \begin{array}{rrrr}
7 & -50 & 7 & 0
\end{array} \\
& \Rightarrow 7 x^{2}-50 x+7=0 \\
& \Rightarrow x=\frac{50 \pm \sqrt{2500-196}}{14}
\end{aligned} \quad\left(a x^{2}+b x+c=0\right) \quad\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right) .
$$

$$
\begin{aligned}
& -1 \begin{array}{rrrr}
7 & -43 & -43 & 7 \\
-7 & 50 & -7 \\
7 & -50 & 7 & 0
\end{array} \\
& \Rightarrow 7 x^{2}-50 x+7=0 \\
& \Rightarrow x=\frac{50 \pm \sqrt{2500-196}}{14} \\
& \Rightarrow x=\frac{50 \pm \sqrt{2304}}{14}
\end{aligned}
$$

$$
\Rightarrow x=\frac{50 \pm 48}{14}
$$

$$
\Rightarrow x=\frac{50 \pm 48}{14}
$$

$$
\Rightarrow x=\frac{98}{14}, \frac{2}{14}
$$

$$
\begin{aligned}
& \Rightarrow x=\frac{50 \pm 48}{14} \\
& \Rightarrow x=\frac{98}{14}, \frac{2}{14} \\
& \Rightarrow x=7, \frac{1}{7}
\end{aligned}
$$

$\Rightarrow x=\frac{50 \pm 48}{14}$
$\Rightarrow x=\frac{98}{14}, \frac{2}{14}$
$\Rightarrow x=7, \frac{1}{7}$

Hence, the roots are $x=-1, \quad 7, \frac{1}{7}$.

Problem 4.

Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Solution.

Problem 4.

Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Solution.

Given $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Problem 4.

Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Solution.

Given $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

This equation is Type II odd degree Case 2 reciprocal equation.

Problem 4.

Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Solution.

Given $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

This equation is Type II odd degree Case 2 reciprocal equation.

Thus 1 is a solution and hence $x-1$ is a factor.

Problem 4.

Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Solution.

Given $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

This equation is Type II odd degree Case 2 reciprocal equation.

Thus 1 is a solution and hence $x-1$ is a factor.
Dividing the polynomial $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1$ by the factor
$x-1$, we get

	1	- 5	9	-9	5		
1		1	-4	5	-4		1
	1	-4	5	-4	1		

1 | 1 | -5 | 9 | -9 | 5 | -1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | 1 | -4 | 5 | -4 | 1 |
| 1 | -4 | 5 | -4 | 1 | 0 |

$\Rightarrow x^{4}-4 x^{3}+5 x^{2}-4 x+1=0 . \quad($ Type I-Standard $)$

$$
\begin{aligned}
& 1 \begin{array}{rrrrrr}
1 & -5 & 9 & -9 & 5 & -1 \\
& 1 & -4 & 5 & -4 & 1 \\
1 & -4 & 5 & -4 & 1 & 0 \\
\hline
\end{array} \begin{array}{l}
\\
\Rightarrow x^{4}-4 x^{3}+5 x^{2}-4 x+1=0 . \quad(\text { Type I - Standard }) \\
x^{2}\left(x^{2}-4 x+5-\frac{4}{x}+\frac{1}{x^{2}}\right)=0
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& 1 \begin{array}{rrrrrr}
1 & -5 & 9 & -9 & 5 & -1 \\
& 1 & -4 & 5 & -4 & 1 \\
\hline 1 & -4 & 5 & -4 & 1 & 0
\end{array} \\
& \Rightarrow x^{4}-4 x^{3}+5 x^{2}-4 x+1=0 . \quad(\text { Type I-Standard) } \\
& x^{2}\left(x^{2}-4 x+5-\frac{4}{x}+\frac{1}{x^{2}}\right)=0 . \\
& \Rightarrow x^{2}-4 x+5-\frac{4}{x}+\frac{1}{x^{2}}=0 . \\
& \text { (since } x \neq 0 \text {) }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0 . \tag{1}
\end{equation*}
$$

$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
Then, we get
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
Then, we get

$$
\left(y^{2}-2\right)-4 y+5=0
$$

$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
Then, we get

$$
\begin{aligned}
& \left(y^{2}-2\right)-4 y+5=0 \\
& \Rightarrow y^{2}-4 y+3=0
\end{aligned}
$$

$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
Then, we get

$$
\begin{aligned}
& \left(y^{2}-2\right)-4 y+5=0 \\
& \Rightarrow y^{2}-4 y+3=0 \\
& \Rightarrow(y-1)(y-3)=0
\end{aligned}
$$

$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+5=0$.
Let $x+\frac{1}{x}=y$; and $x^{2}+\left(\frac{1}{x}\right)^{2}=y^{2}-2$.
Then, we get

$$
\begin{aligned}
& \left(y^{2}-2\right)-4 y+5=0 \\
& \Rightarrow y^{2}-4 y+3=0 \\
& \Rightarrow \quad(y-1)(y-3)=0 \\
& \Rightarrow y=1,3
\end{aligned}
$$

$$
y=3 \Rightarrow x+(1 / x)=3
$$

$$
\begin{aligned}
& y=3 \Rightarrow x+(1 / x)=3 \\
& \Rightarrow x^{2}+1=3 x
\end{aligned}
$$

$$
\begin{aligned}
& y=3 \Rightarrow x+(1 / x)=3 \\
& \Rightarrow x^{2}+1=3 x \\
& \Rightarrow x^{2}-3 x+1=0 \quad\left(a x^{2}+b x+c=0\right)
\end{aligned}
$$

$$
\begin{array}{ll}
y=3 \Rightarrow x+(1 / x)=3 & \\
\Rightarrow x^{2}+1=3 x \\
\Rightarrow x^{2}-3 x+1=0 & \left(a x^{2}+b x+c=0\right) \\
\Rightarrow x=\frac{3 \pm \sqrt{9-4}}{2} & \left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
\end{array}
$$

$$
\begin{aligned}
& y=3 \Rightarrow x+(1 / x)=3 \\
& \Rightarrow x^{2}+1=3 x \\
& \Rightarrow x^{2}-3 x+1=0 \\
& \Rightarrow x=\frac{3 \pm \sqrt{9-4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& \Rightarrow x=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=3 \Rightarrow x+(1 / x)=3 \\
& \Rightarrow x^{2}+1=3 x \\
& \Rightarrow x^{2}-3 x+1=0 \\
& \Rightarrow x=\frac{3 \pm \sqrt{9-4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& \Rightarrow x=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

$y=1 \Rightarrow$ There exists no solution.

$$
\begin{aligned}
& y=3 \Rightarrow x+(1 / x)=3 \\
& \Rightarrow x^{2}+1=3 x \\
& \Rightarrow x^{2}-3 x+1=0 \\
& \Rightarrow x=\frac{3 \pm \sqrt{9-4}}{2} \quad\left(a x^{2}+b x+c=0\right) \\
& \Rightarrow x=\frac{3 \pm \sqrt{5}}{2}
\end{aligned}
$$

$y=1 \Rightarrow$ There exists no solution.

Hence, the roots are $x=1$,

$$
\frac{3+\sqrt{5}}{2}, \quad \frac{3-\sqrt{5}}{2}
$$

Problems

Problem 5.

Solve the following equation $x^{4}-3 x^{3}+4 x^{2}-3 x+1=0$.

Problem 6.

Solve the following equation $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$.

Problem 7.
Solve the following equation $x^{5}-5 x^{4}+9 x^{3}-9 x^{2}+5 x-1=0$.

Problem 8.

Solve the following equation $x^{5}+8 x^{4}+21 x^{3}+21 x^{2}+8 x+1=0$.

