Allied Mathematics - I Unit-II Theory of Equation

Dr S. Srinivasan

Assistant Professor, Department of Mathematics , Periyar Arts College,

Cuddalore,
Tamil nadu.
Email: smrail@gmail.com
Cell: 7010939424

Types of Problems

1. Relation between the roots and coefficient of equations.
2. Imaginary roots and irrational roots.
3. Transformation of equations.
4. Reciprocal equations.
5. Newton's method.

2.5 Newton's method

Suppose that we want to approximate the solution to $f(x)=0$.

2.5 Newton's method

Suppose that we want to approximate the solution to $f(x)=0$.

Suppose that we have somehow found an initial approximation to this solution say, x_{0}.

2.5 Newton's method

Suppose that we want to approximate the solution to $f(x)=0$.

Suppose that we have somehow found an initial approximation to this
solution say, x_{0}.
This initial approximation is probably not all that good, so we can find
a better approximation.

2.5 Newton's method

Suppose that we want to approximate the solution to $f(x)=0$.

Suppose that we have somehow found an initial approximation to this
solution say, x_{0}.
This initial approximation is probably not all that good, so we can find
a better approximation.
This is easy enough to do.

2.5 Newton's method

Suppose that we want to approximate the solution to $f(x)=0$.
Suppose that we have somehow found an initial approximation to this
solution say, x_{0}.
This initial approximation is probably not all that good, so we can find
a better approximation.
This is easy enough to do.

First, we will get the tangent line to $f(x)$ at x_{0}.

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Now, take a look at the graph below.

Now, take a look at the graph below.

The blue line is the tangent line at x_{0}.

Now, take a look at the graph below.

The blue line is the tangent line at x_{0}.

We can see that this line will cross the X-axis much closer to the actual solution to the equation than x_{0} does.

Now, take a look at the graph below.

The blue line is the tangent line at x_{0}.
We can see that this line will cross the X-axis much closer to the actual solution to the equation than x_{0} does.

Let us call this point where the tangent at x_{0} crosses the X-axis by x_{1}.

We will use this point as our new approximation to the solution.

We will use this point as our new approximation to the solution.
So, how do we find this point?

We will use this point as our new approximation to the solution.
So, how do we find this point?
Well we know it's coordinates, $\left(x_{1}, 0\right)$.

We will use this point as our new approximation to the solution.
So, how do we find this point?

Well we know it's coordinates, $\left(x_{1}, 0\right)$.
Substitute in the tangent line and solve for x_{1} as follows.

We will use this point as our new approximation to the solution.
So, how do we find this point?

Well we know it's coordinates, $\left(x_{1}, 0\right)$.
Substitute in the tangent line and solve for x_{1} as follows.

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)
$$

We will use this point as our new approximation to the solution.
So, how do we find this point?

Well we know it's coordinates, $\left(x_{1}, 0\right)$.
Substitute in the tangent line and solve for x_{1} as follows.

$$
\begin{aligned}
0 & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
\left(x_{1}-x_{0}\right) & =-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

We will use this point as our new approximation to the solution.
So, how do we find this point?

Well we know it's coordinates, $\left(x_{1}, 0\right)$.
Substitute in the tangent line and solve for x_{1} as follows.

$$
\begin{aligned}
0 & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
\left(x_{1}-x_{0}\right) & =-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

We will use this point as our new approximation to the solution.
So, how do we find this point?

Well we know it's coordinates, $\left(x_{1}, 0\right)$.
Substitute in the tangent line and solve for x_{1} as follows.

$$
\begin{aligned}
0 & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
\left(x_{1}-x_{0}\right) & =-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

So, we can find the new approximation provided the derivative is not zero at the original approximation.

Now we repeat the whole process to find an even better approximation.

Now we repeat the whole process to find an even better approximation.
If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$

Now we repeat the whole process to find an even better approximation.
If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$
the next approximation is given by,

Now we repeat the whole process to find an even better approximation.
If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$
the next approximation is given by,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Now we repeat the whole process to find an even better approximation.

If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$
the next approximation is given by,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

This should lead to the question of when do we stop?

Now we repeat the whole process to find an even better approximation.
If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$
the next approximation is given by,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

This should lead to the question of when do we stop?
How many times do we go through this process?

Now we repeat the whole process to find an even better approximation.
If x_{n} is an approximation a solution of $f(x)=0$ and if $f^{\prime}\left(x_{n}\right) \neq 0$
the next approximation is given by,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

This should lead to the question of when do we stop?

How many times do we go through this process?

One of the more common stopping points in the process is to continue until two successive approximations agree to a given number of decimal places.

Steps for solving

Steps for solving

To find an approximate value for c

Steps for solving

To find an approximate value for c

1. Start with an initial approximation x_{0} close to c.

Steps for solving

To find an approximate value for c

1. Start with an initial approximation x_{0} close to c.
2. Determine the next approximation by the formula

Steps for solving

To find an approximate value for c

1. Start with an initial approximation x_{0} close to c.
2. Determine the next approximation by the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Steps for solving

To find an approximate value for c

1. Start with an initial approximation x_{0} close to c.
2. Determine the next approximation by the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

3. Continue the iterative process using the formula until the root is found to the desired accuracy.

Problem 1.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.

Let $f(x)=x^{2}-3$.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.
Let $f(x)=x^{2}-3$.

Put $x=1 \Rightarrow f(1)=1-3=-v e$

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.

Let $f(x)=x^{2}-3$.
Put $x=1 \Rightarrow f(1)=1-3=-v e$

$$
x=2 \Rightarrow f(2)=4-3=+v e
$$

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.

Let $f(x)=x^{2}-3$.

Put $x=1 \Rightarrow f(1)=1-3=-v e$
$x=2 \Rightarrow f(2)=4-3=+v e$
\therefore the roots lies between $[1,2]$.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.

Let $f(x)=x^{2}-3$.

Put $x=1 \Rightarrow f(1)=1-3=-v e$
$x=2 \Rightarrow f(2)=4-3=+v e$
\therefore the roots lies between $[1,2]$.

Let us take $x_{0}=1$.

Problem 1.Find by Newton's method an approximate value of the positive root of the equation $x^{2}-3$.

Solution.
Let $f(x)=x^{2}-3$.
Put $x=1 \Rightarrow f(1)=1-3=-v e$
$x=2 \Rightarrow f(2)=4-3=+v e$
\therefore the roots lies between [1, 2].
Let us take $x_{0}=1$.
$f^{\prime}(x)=2 x$

Here $f(x)=x^{2}-3 ;$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=x_{0}-\frac{f(1)}{f^{\prime}(1)}
\end{aligned}
$$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=x_{0}-\frac{f(1)}{f^{\prime}(1)} \\
& x_{1}=1-\frac{\left(1^{2}-3\right)}{2}
\end{aligned}
$$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=x_{0}-\frac{f(1)}{f^{\prime}(1)} \\
& x_{1}=1-\frac{\left(1^{2}-3\right)}{2} \\
& x_{1}=1+\frac{2}{2}
\end{aligned}
$$

Here $f(x)=x^{2}-3 ; f^{\prime}(x)=2 x$ and $x_{0}=1$
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=x_{0}-\frac{f(1)}{f^{\prime}(1)} \\
& x_{1}=1-\frac{\left(1^{2}-3\right)}{2} \\
& x_{1}=1+\frac{2}{2} \\
& x_{1}=2
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$2^{\text {nd }}$ approximation: if $n=1$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=2-\frac{f(2)}{f^{\prime}(2)}
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
x_{2}=2-\frac{f(2)}{f^{\prime}(2)}
$$

$$
x_{2}=2-\frac{\left(2^{2}-3\right)}{2.2}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=2-\frac{f(2)}{f^{\prime}(2)} \\
& x_{2}=2-\frac{\left(2^{2}-3\right)}{2.2} \\
& x_{2}=2-\frac{1}{4}
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
x_{2}=2-\frac{f(2)}{f^{\prime}(2)}
$$

$$
x_{2}=2-\frac{\left(2^{2}-3\right)}{2.2}
$$

$$
x_{2}=2-\frac{1}{4}
$$

$$
x_{2}=1.75
$$

$3^{\text {rd }}$ approximation: if $n=2$
$3^{r d}$ approximation: if $n=2$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

$3^{\text {rd }}$ approximation: if $n=2$

$$
\begin{aligned}
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& x_{3}=1.75-\frac{f(1.75)}{f^{\prime}(1.75)}
\end{aligned}
$$

$3^{\text {rd }}$ approximation: if $n=2$

$$
\begin{aligned}
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& x_{3}=1.75-\frac{f(1.75)}{f^{\prime}(1.75)} \\
& x_{3}=1.75-\frac{\left((1.75)^{2}-3\right)}{2 \times 1.75}
\end{aligned}
$$

$3^{r d}$ approximation: if $n=2$

$$
\begin{aligned}
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& x_{3}=1.75-\frac{f(1.75)}{f^{\prime}(1.75)} \\
& x_{3}=1.75-\frac{\left((1.75)^{2}-3\right)}{2 \times 1.75}
\end{aligned}
$$

$$
x_{3}=1.732143
$$

$4^{\text {th }}$ approximation: if $n=3$
$4^{\text {th }}$ approximation: if $n=3$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
\begin{aligned}
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \\
& x_{4}=1.732143-\frac{f(1.732143)}{f^{\prime}(1.732143)}
\end{aligned}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
\begin{aligned}
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \\
& x_{4}=1.732143-\frac{f(1.732143)}{f^{\prime}(1.732143)} \\
& x_{4}=1.732143-\frac{\left((1.732143)^{2}-3\right)}{2 \times 1.732143}
\end{aligned}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
\begin{aligned}
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \\
& x_{4}=1.732143-\frac{f(1.732143)}{f^{\prime}(1.732143)} \\
& x_{4}=1.732143-\frac{\left((1.732143)^{2}-3\right)}{2 \times 1.732143} \\
& x_{4}=1.732050
\end{aligned}
$$

$5^{\text {th }}$ approximation: if $n=4$
$5^{\text {th }}$ approximation: if $n=4$

$$
x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)}
$$

$5^{\text {th }}$ approximation: if $n=4$

$$
\begin{aligned}
& x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)} \\
& x_{5}=1.732050-\frac{f(1.732050)}{f^{\prime}(1.732050)}
\end{aligned}
$$

$5^{\text {th }}$ approximation: if $n=4$

$$
\begin{aligned}
& x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)} \\
& x_{5}=1.732050-\frac{f(1.732050)}{f^{\prime}(1.732050)} \\
& x_{5}=1.732050-\frac{\left((1.732050)^{2}-3\right)}{2 \times 1.732050}
\end{aligned}
$$

$5^{\text {th }}$ approximation: if $n=4$

$$
\begin{aligned}
& x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)} \\
& x_{5}=1.732050-\frac{f(1.732050)}{f^{\prime}(1.732050)} \\
& x_{5}=1.732050-\frac{\left((1.732050)^{2}-3\right)}{2 \times 1.732050}
\end{aligned}
$$

$$
x_{5}=1.732050
$$

$5^{\text {th }}$ approximation: if $n=4$

$$
x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)}
$$

$$
x_{5}=1.732050-\frac{f(1.732050)}{f^{\prime}(1.732050)}
$$

$$
x_{5}=1.732050-\frac{\left((1.732050)^{2}-3\right)}{2 \times 1.732050}
$$

$$
x_{5}=1.732050
$$

Thus, the approximate root of $x^{2}-3$ is
$5^{\text {th }}$ approximation: if $n=4$

$$
\begin{aligned}
& x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)} \\
& x_{5}=1.732050-\frac{f(1.732050)}{f^{\prime}(1.732050)} \\
& x_{5}=1.732050-\frac{\left((1.732050)^{2}-3\right)}{2 \times 1.732050}
\end{aligned}
$$

$$
x_{5}=1.732050
$$

Thus, the approximate root of $x^{2}-3$ is 1.732050 .

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.
Put $x=1 \Rightarrow f(1)=1-12=-v e$

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.
Put $x=1 \Rightarrow f(1)=1-12=-v e$
$x=2 \Rightarrow f(2)=4-12=-v e$

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.
Put $x=1 \Rightarrow f(1)=1-12=-v e$

$$
\begin{aligned}
& x=2 \Rightarrow f(2)=4-12=-v e \\
& x=3 \Rightarrow f(2)=9-12=-v e
\end{aligned}
$$

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.
Put $x=1 \Rightarrow f(1)=1-12=-v e$
$x=2 \Rightarrow f(2)=4-12=-v e$
$x=3 \Rightarrow f(2)=9-12=-v e$
$x=4 \Rightarrow f(2)=16-12=+v e$

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.

$$
\text { Put } x=1 \Rightarrow f(1)=1-12=-v e
$$

$$
x=2 \Rightarrow f(2)=4-12=-v e
$$

$$
x=3 \Rightarrow f(2)=9-12=-v e
$$

$$
x=4 \Rightarrow f(2)=16-12=+v e
$$

\therefore the roots lies between $[3,4]$.

Problem 2. Find by Newton's method an approximate value of the positive root of the equation $x^{2}-12$.

Solution.

Let $f(x)=x^{2}-12$.

$$
\text { Put } x=1 \Rightarrow f(1)=1-12=-v e
$$

$$
x=2 \Rightarrow f(2)=4-12=-v e
$$

$$
x=3 \Rightarrow f(2)=9-12=-v e
$$

$$
x=4 \Rightarrow f(2)=16-12=+v e
$$

\therefore the roots lies between $[3,4]$.

Here $f(x)=x^{2}-12 ;$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=3-\frac{f(3)}{f^{\prime}(3)}
\end{aligned}
$$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=3-\frac{f(3)}{f^{\prime}(3)} \\
& x_{1}=3-\frac{\left(3^{2}-12\right)}{2.3}
\end{aligned}
$$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=3-\frac{f(3)}{f^{\prime}(3)} \\
& x_{1}=3-\frac{\left(3^{2}-12\right)}{2.3} \\
& x_{1}=3+\frac{3}{6}
\end{aligned}
$$

Here $f(x)=x^{2}-12 ; f^{\prime}(x)=2 x$ and $x_{0}=3$.
We know that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$1^{\text {st }}$ approximation: if $n=0$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& x_{1}=3-\frac{f(3)}{f^{\prime}(3)} \\
& x_{1}=3-\frac{\left(3^{2}-12\right)}{2.3} \\
& x_{1}=3+\frac{3}{6} \\
& x_{1}=3.5
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$
$2^{\text {nd }}$ approximation: if $n=1$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=3.5-\frac{f(3.5)}{f^{\prime}(3.5)}
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=3.5-\frac{f(3.5)}{f^{\prime}(3.5)} \\
& x_{2}=3.5-\frac{\left((3.5)^{2}-12\right)}{2 \times 3.5}
\end{aligned}
$$

$2^{\text {nd }}$ approximation: if $n=1$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& x_{2}=3.5-\frac{f(3.5)}{f^{\prime}(3.5)} \\
& x_{2}=3.5-\frac{\left((3.5)^{2}-12\right)}{2 \times 3.5}
\end{aligned}
$$

$$
x_{2}=3.4642
$$

$3^{\text {rd }}$ approximation: if $n=2$
$3^{r d}$ approximation: if $n=2$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

$3^{r d}$ approximation: if $n=2$

$$
\begin{aligned}
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& x_{3}=3.4642-\frac{f(3.4642)}{f^{\prime}(3.4642)}
\end{aligned}
$$

$3^{\text {rd }}$ approximation: if $n=2$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

$$
x_{3}=3.4642-\frac{f(3.4642)}{f^{\prime}(3.4642)}
$$

$$
x_{3}=3.4642-\frac{\left((3.4642)^{2}-12\right)}{2 \times 3.4642}
$$

$3^{r d}$ approximation: if $n=2$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

$$
x_{3}=3.4642-\frac{f(3.4642)}{f^{\prime}(3.4642)}
$$

$$
x_{3}=3.4642-\frac{\left((3.4642)^{2}-12\right)}{2 \times 3.4642}
$$

$$
x_{3}=3.4641
$$

$4^{\text {th }}$ approximation: if $n=3$
$4^{\text {th }}$ approximation: if $n=3$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
\begin{aligned}
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \\
& x_{4}=3.4641-\frac{f(3.4641)}{f^{\prime}(3.4641)}
\end{aligned}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

$$
x_{4}=3.4641-\frac{f(3.4641)}{f^{\prime}(3.4641)}
$$

$$
x_{3}=3.4641-\frac{\left((3.4641)^{2}-12\right)}{2 \times 3.4641}
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

$$
x_{4}=3.4641-\frac{f(3.4641)}{f^{\prime}(3.4641)}
$$

$$
x_{3}=3.4641-\frac{\left((3.4641)^{2}-12\right)}{2 \times 3.4641}
$$

$$
x_{3}=3.4641
$$

$4^{\text {th }}$ approximation: if $n=3$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

$$
x_{4}=3.4641-\frac{f(3.4641)}{f^{\prime}(3.4641)}
$$

$$
x_{3}=3.4641-\frac{\left((3.4641)^{2}-12\right)}{2 \times 3.4641}
$$

$$
x_{3}=3.4641
$$

Thus, the approximate root of $x^{2}-12$ is 3.4641 .

Problems

Find by Newton's method an approximate value of the positive root of the equations.
(i) $x^{3}-2 x-5=0$
(ii) $x^{3}-3 x+1=0$
(iii) $x^{3}-5 x+3=0$

