CAMA 15C: Mathematics - I Unit-III Matrices

Dr S. Srinivasan

Assistant Professor,
Department of Mathematics ,
Periyar Arts College, Cuddalore,
Tamil nadu.
Email: smrail@gmail.com
Cell: 7010939424

Types of Problems

1. Symmetric and Skew-Symmetric Matrices
2. Orthogonal and unitary matrices
3. Rank of a matrix
4. Consistency of equations
5. Eigenvalues and eigenvectors
6. Cayley-Hamilton theorem verification and find inverse matrix

Matrix

A matrix is a rectangular arrangement of elements displayed in rows and columns put within a bracket ().

If a matrix A has m rows and n columns, then it is written as

$$
\begin{aligned}
A= & \left(a_{i j}\right) \text { where } 1 \leq i \leq m, 1 \leq j \leq n . \\
& \text { i.e., } A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)_{m \times n}
\end{aligned}
$$

The order of the matrix A is defined to be $m \times n($ read as m by $n)$.

Square matrix

A matrix in which number of rows is equal to the number of columns, is called a square matrix.

That is, a matrix of order $n \times n$ is often referred to as a square matrix of order n.

Example:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)_{3 \times 3}
$$

Diagonal matrix

A square matrix $A=\left(a_{i j}\right)_{n \times n}$ is called a diagonal matrix
if $a_{i j}=0$ whenever $i \neq j$.
Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)_{3 \times 3}
$$

Unit matrix

A square matrix in which all the diagonal entries are 1 and the rest are all zero is called a unit matrix.

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)_{3 \times 3}
$$

Transpose of a matrix

The transpose of a matrix is obtained by interchanging rows and columns of A and is denoted by A^{T}.

Example:

$$
A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
a & 0 & 4 \\
b & c & 7
\end{array}\right)_{3 \times 3}
$$

$$
A^{T}=\left(\begin{array}{rrr}
1 & a & b \\
-1 & 0 & c \\
2 & 4 & 7
\end{array}\right)_{3 \times 3}
$$

Properties

For any two matrices A and B of suitable orders, we have
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(k A)^{T}=k A^{T}$ where k is any scalar
(iii) $(A \pm B)^{T}=A^{T} \pm B^{T}$
(iv) $(A B)^{T}=B^{T} A^{T}$

3.1 Symmetric and Skew-Symmetric Matric

A square matrix A is said to be symmetric if $A^{T}=A$.
That is, $A=\left(a_{i j}\right)_{n \times n}$ is a symmetric matrix, then $a_{i j}=a_{j i}$ for all i and j.
Example:

$$
\begin{gathered}
A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 4 \\
2 & 4 & 7
\end{array}\right)_{3 \times 3} \quad A^{T}=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 4 \\
2 & 4 & 7
\end{array}\right)_{3 \times 3} \\
\Rightarrow A=A^{T}
\end{gathered}
$$

Skew-symmetric

A square matrix A is said to be skew-symmetric if $A^{T}=-A$.
I.e., $A=\left(a_{i j}\right)_{n \times n}$ is a symmetric matrix, then $a_{i j}=-a_{j i}$ for all i and j.

Example:

$$
\begin{gathered}
A=\left(\begin{array}{rrr}
0 & -1 & 3 \\
1 & 0 & 4 \\
-3 & -4 & 0
\end{array}\right)_{3 \times 3} \quad-A^{T}=-\left(\begin{array}{rrr}
0 & 1 & -3 \\
-1 & 0 & -4 \\
3 & 4 & 0
\end{array}\right)_{3 \times 3} \\
\Rightarrow A=-A^{T}
\end{gathered}
$$

Note: A matrix which is both symmetric and skew-symmetric is a zero matrix

Results

1. For any square matrix A with real number entries, $A+A^{T}$ is a symmetric matrix and $A-A^{T}$ is a skew-symmetric matrix.
2. Any square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.
3. Let A and B be two symmetric matrices. $A B$ is a symmetric matrix if and only if $A B=B A$.
4. (i) $A B+B A$ is a symmetric matrix.
(ii) $A B-B A$ is a skew-symmetric matrix.

3.2. Orthogonal and unitary matrices

A matrix is said to be an orthogonal matrix if the product of a matrix
and its transpose gives an identity matrix.
I.e., $A A^{T}=A^{T} A=1$

Note:
A is orthogonal $\Leftrightarrow A^{-1}=A^{T}$.

Example:

$$
\text { Let } \quad A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
A^{T}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

$$
A A^{T}=\left(\begin{array}{cc}
\frac{1}{2}+\frac{1}{2} & \frac{1}{2}-\frac{1}{2} \\
\frac{1}{2}-\frac{1}{2} & \frac{1}{2}+\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example:

Let $\quad A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

$$
A^{T}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
A A^{T}=\left(\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\cos \theta \sin \theta-\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Conjugate matrix

A conjugate matrix of a matrix A is obtained by replacing each term with its complex conjugate.

It is denoted by \bar{A}

Example:

$$
A=\left(\begin{array}{cc}
1 & 1+i \\
2-i & -3
\end{array}\right)
$$

$$
\bar{A}=\left(\begin{array}{cc}
1 & 1-i \\
2+i & -3
\end{array}\right)
$$

Properties:

For any two matrices A and B of suitable orders, we have
(i) $\overline{\bar{A}}=A$
(ii) $\overline{k A}=k \bar{A}$ where k is any scalar
(iii) $\overline{A+B}=\bar{A}+\bar{B}$
(iv) $\overline{A B}=\overline{A B}$

Note: $\bar{A}^{T}=\overline{A^{T}}=A^{*}$

Unitary matrix

A square matrix is said to be the unitary matrix if

$$
A A^{*}=A^{*} A=I
$$

Note:

A is unitary $\Leftrightarrow A^{-1}=A^{*}$.

Example:

Let $\quad A=\left(\begin{array}{cc}\frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}\end{array}\right)$

$$
\begin{aligned}
& A^{T}=\left(\begin{array}{cc}
\frac{1+i}{2} & \frac{1+i}{2} \\
\frac{-1+i}{2} & \frac{1-i}{2}
\end{array}\right) \\
& \overline{A^{T}}=\left(\begin{array}{cc}
\frac{1-i}{2} & \frac{1-i}{2} \\
\frac{-1-i}{2} & \frac{1+i}{2}
\end{array}\right)
\end{aligned}
$$

$$
A A^{*}=A \overline{A^{T}}=\left(\begin{array}{ll}
\frac{1+i}{2} \frac{1-i}{2}+\frac{-1+i}{2} \frac{-1-i}{2} & \frac{1+i}{2} \frac{1-i}{2}+\frac{-1+i}{2} \frac{1+i}{2} \\
\frac{1+i+i}{2} \frac{1-i}{2}+\frac{1-i}{2} \frac{-1-i}{2} & \frac{1+i}{2} \frac{1-i}{2}+\frac{1-i}{2} \frac{1+i}{2}
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
\frac{1-i^{2}}{4}+\frac{1-i^{2}}{4} & \frac{1-i^{2}}{4}+\frac{i^{2}-1}{4} \\
\frac{1-i^{2}}{4}+\frac{i^{2}-1}{4} & \frac{1-i^{2}}{4}+\frac{1-i^{2}}{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example:

Let $\quad A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}0 & -1+i \\ 1+i & 0\end{array}\right)$

$$
\begin{aligned}
& A^{T}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1+i \\
-1+i & 0
\end{array}\right) \\
& \overline{A^{T}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1-i \\
-1-i & 0
\end{array}\right)
\end{aligned}
$$

$$
A A^{*}=A \overline{A^{T}}=\frac{1}{2}\left(\begin{array}{cc}
0+(-1+i)(-1-i) & 0 \\
0 & (1+i)(1-i)
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{cc}
1-i^{2} & 0 \\
0 & 1-i^{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Problems

1. Show that the matrix $\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right)$ is orthogonal.
2. Prove that the matrix $\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}\end{array}\right)$ is orthogonal.
3. Show that the matrix $A=\left(\begin{array}{cc}\frac{1+i}{\sqrt{7}} & \frac{2+i}{\sqrt{7}} \\ \frac{2-i}{\sqrt{7}} & \frac{-1+i}{\sqrt{7}}\end{array}\right)$ is unitary.
